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ABSTRACT 
A shortcoming of generation using rolling method is given by the interference of 
profiles due to the generation of trajectories of the discontinuities on the composed 
profiles, as happens with the majority of profiles used in technical applications. 

An analysis of an interference process in case of a gear worm is proposed in this 
paper. The problem is approached as a gear between the toothed wheel and the rack 
(the worm’s axial section), using the complementary theorem of the generation of 
trajectories. An analytical support and a graphical algorithm developed in CATIA 
design environment are presented. A numerical example calculated using the 
graphical methodology is also presented. 
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1. INTRODUCTION 

The interference of surfaces (profiles) generated by 
surface enwrapping machining techniques is one of 
the limits of this generating process. The profiles’ 
interference is due to the presence on the technical 
profiles, which, frequently, are composed profiles, of 
singular points — points where two distinct normals 
can be defined. 

Due to this cause, the enwrapping condition 
definition in these points is ambiguous; consequently, 
considering the inherent discontinuities onto the tool’s 
profile, the relative trajectory generation regarding the 
tool or the blank creates forms which lead to 
interference of profiles. 

In order to avoid these generating trajectories it 
is mandatory to make discontinuities onto profiles. 
This is difficult to realize from a technical point of 
view [1], [9]. 

The dimensions of the transition curves — 
generating trajectories of the singular points — can be 
limited changing the form of the centrodes associated 
with profiles at generation by rolling, the constructive 
modification of the surface to be generated for helical 
surfaces, generation of one surface with multiple 
tools, in successive passages. All these methods are 
difficult to realize in practical execution of surface 
generation. 

The issue of surfaces (profiles) interference 
generated by enwrapping is frequently presented in 
specialized literature in order to elaborate solutions 
for identification of the interference zones onto 
profiles and ways to diminish the influence of the 
interference process on the functionality of generated 
surfaces. Regarding the analytical methods for the 
study of profiles interference, Zhang [3] proposes a 
solution for this problem using the “finite element 
method (FEM) for the three-dimensional stress 
analysis at interference titled connections”. This leads 
to increased accuracy of results in comparison with 
classical methods. 

Also, Pimsarn [4] proposes a new estimation 
method for pseudo-interference stiffness. The 
proposed method is faster and more accurate than the 
finite element method applied for solids in contact. 

At the same time, authors like He Guiping and 
all [5] present graphical solutions for determining the 
interference between profiles at machining of non-
circular toothed wheels. 

Similar problems are presented by Berbinschi 
and all [6], with solutions developed in CATIA. 

An issue related to assembling interference for 
a worm gear is approached in this paper, and a 
graphical solution in CATIA is presented. 
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2. ENWRAPPING PROFILES 

An analysis of a worm gear is proposed. The 
approach is based on the axial section gearing 
(rack-gear) with the crossing section, in the same 
plane, of the cylindrical wheel (figures 1a and 1b). 

 
a.  

 
b. 

Fig. 1. The worm-cylindrical wheel gear: a. gearing 
kinematics; b. wheel’s profile, rolling centrodes and 

reference systems 

The reference systems are defined: 
XYZ is the relative reference system joined 

with the C1 centrode of the cylindrical wheel (Z is the 
rotation axis); 

X1Y1Z1 — relative reference system joined with 
the C2 centrode of the reference rack-gear (axial 
section of the worm); Y1 — worm’s axis. The XY and 
X1Y1 planes are identical. 

xyz — global reference system. Initially the 
axes of the XYZ relative reference system overlap 
with the axes of the global reference system. 

In Figure 1b, the relative reference systems are 
represented in the initial position. 

In the XY reference system are defined the Σ 

surfaces for the two flanks: AB  (right flank) and, 
respectively CD  (left flank). 

 
;

;
.

AB

X u
Y b
Z h

= −
Σ =

=
 (1) 

 

 
1;
;

.
CD

X u
Y b
Z h

= −
Σ = −

=
 (2) 

The h parameter in the generating plane has 
value 0 (h=0). 

The variation limits for the u parameter are: 

 2 2 2 2
min max;i eu R b u R b= − = −  (3) 

and similarly for u1. 
It is known that, for this profile type, the 

minimum value of the rolling radius is umax. 
According to the generating trajectory method 

[7], the versor of the normal to the ∑ surface is 
calculated: 

 1 0 0
0 0 1

AB

i j k
N jΣ = − =

r r r

uur r
 (4) 

and, similarly, 
 CDN jΣ =

uur r
. (5) 

Now, the equations of normals to the flanks 
ABΣ  and CDΣ  can be written in the current point: 

 
;

;
,

AB

X u
N Y b

Z h
Σ

= −
= + λ
=

 (6) 

and, similarly, 

 
1;

;
,

CD

X u
N Y b

Z h
Σ

= −
= − + λ
=

 (7) 

where λ is a variable scalar parameter. 
The relative motion between the X1Y1Z1 and 

XYZ reference systems is given by transformation: 
 ( )1 3

TX X a= ω ϕ ⋅ − , (8) 
where 

 ( )
( )

3

cos sin 0
sin cos 0 ;

0 0 1 0

r r
T

r

R r
a R

ϕ − ϕ − +
ω ϕ = ϕ ϕ = − ⋅ϕ . (9) 

In this way, from (8) with definitions (9), the 
family of normals to the AB  and CD  flanks is 
defined in the forms: 

AB  flank: 

 
( )1

1

1

cos sin 0
sin cos 0

0 0 1 0

r r

r

X u R r
Y b R
Z H

ϕ − ϕ − − +
= ϕ ϕ ⋅ + λ − − ⋅ϕ , (10) 

 ( )
( )1

1

1

cos ( ) sin ;
sin ( ) cos ;

.

r r

rAB

X u b R r
N Y u b R

Z h
Σ ϕ

= − ⋅ ϕ− + λ ⋅ ϕ+ +
= − ⋅ ϕ+ + λ ⋅ ϕ+ ⋅ϕ
=

 (11) 
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CD  flank: 

 
( )1 1

1

1

cos sin 0
sin cos 0

0 0 1 0

r r

r

X u R r
Y b R
Z H

ϕ − ϕ − − +
= ϕ ϕ ⋅ − + λ − − ⋅ϕ , (12) 

 

( )
( )1 1

1 1

1

cos ( ) sin ;
sin ( ) cos ;

.

r r

rCD

X u b R r
N Y u b R

Z h
Σ ϕ

= − ⋅ ϕ− − + λ ⋅ ϕ+ +
= − ⋅ ϕ+ − + λ ⋅ ϕ+ ⋅ϕ
=

 

(13) 

For λ=0, equations (11) and (13) represent the 
generating trajectories of points belonging to the 
toothed wheel profiles. 

The enwrapping of generating trajectories 
represents the rack-gear profile (axial section of the 
worm from construction of the analysed gear). 

In order to determine the enwrapping 
condition, it is imposed that the normals family (11) 
and (13) pass through the incident line to the gearing 
pole of the in-plane gearwheel-rack gear (axial section 
of the worm), which is perpendicular to the XY plane 
and has the following coordinates: 

 
1

1

1

;
: ;

0.

r

r

X r
P Y R

Z

=
= ⋅ϕ
=

 (14) 

In this way, from (11) and (14) result the 
conditions: 

 ( )cos ( ) sin ;
sin ( ) cos .

r r r

r r

u b R r r
u b R R

− ⋅ ϕ− + λ ⋅ ϕ + + =

− ⋅ ϕ+ + λ ⋅ ϕ+ ⋅ϕ = ⋅ϕ
 (15) 

Removing the λ parameter between the two 
equations 

 cos sin sin cos ,
sin cos

ru R b u b− ⋅ ϕ+ − ⋅ ϕ − ⋅ ϕ+ ⋅ ϕ
=

ϕ − ϕ
 (16) 

from the enwrapping condition results: 
 cosru R= ⋅ ϕ . (17) 

For λ=0, the equations assembly (11) and (17) 
represents the enwrapping of generating trajectories, 

namely the conjugated rack-gear’s profile (worm’s 
axial section, h=0). 

The problem is similar for CD flank. 
The profile of the worm’s axial section results 

from (11) and (17): 

 
( )2

1

1

1

cos sin ;
sin cos cos ;

0.

r r r

AB r r

X R b R r
S Y R b R

Z

= − ⋅ ϕ− ⋅ ϕ+ +
= − ⋅ ϕ⋅ ϕ+ ⋅ ϕ+ ⋅ϕ
=

 (18) 

Similarly, for left flank CD: 

 
( )2

1

1

1

cos sin ;
sin cos cos ;

0,

r r r

CD r r

X R b R r
S Y R b R

Z

= − ⋅ ϕ+ ⋅ ϕ+ +
= − ⋅ ϕ⋅ ϕ− ⋅ ϕ+ ⋅ϕ
=

 (19) 

and, as well, 

 
1

1

1

;
;

0.

r r e

BD r

X r R R
S Y R

Z

= + −
= ⋅ϕ
=

 (20) 

The worm’s analytical model 

The worm’s axial section in helical motion 
around Y1 axis, with p helical parameter, generates the 
helical cylindrical worm, right hand worm. 

The helical movement of the worm’s axial 
section is described by a transformation in the form: 
 ( )1 2 1

T
ABX v X p v j= ω ⋅ + ⋅ ⋅

r
, (21) 

with 1ABX  from (18) and, similarly, for �BD  and CD  
(see (19) and (20)). 

Finally, after developments, the analytical 
forms result: 

 
( )

( )

1

1

1

cos ;
;

sin .

r r e

DB r

r r e

X R r R v
S Y R p v

Z R r R v

= + − ⋅
= ⋅ϕ+ ⋅
= + − ⋅

 (22) 

 
  

 
( )

( )

2
1

1
2

1

sin sin cos ;

sin cos cos ;

sin sin sin .

r r

AB r r

r r

X R b r v

S Y R b R p v

Z R b r v

= ⋅ ϕ− ⋅ ϕ+ ⋅

= − ⋅ ϕ⋅ ϕ+ ⋅ ϕ+ ⋅ϕ+ ⋅

= − ⋅ ϕ− ⋅ ϕ+ ⋅

 (23) 

 
( )

( )

2
1

1
2

1

sin sin cos ;

sin cos cos ;

sin sin sin .

r r

CD r r

r r

X R b r v

S Y R b R p v

Z R b r v

= ⋅ ϕ + ⋅ ϕ + ⋅

= − ⋅ ϕ ⋅ ϕ − ⋅ ϕ + ⋅ϕ + ⋅

= − ⋅ ϕ − ⋅ ϕ + ⋅

 (24) 

 
3. THE INTERFERENCE STUDY 

The gear between the worm and the cylindrical wheel, 
with straight lined frontal profile, has a certain 
thickness; let this be 2H (see figure 2). 

In this way, due to the worm’s helical flanks, 
interference can occur. These interferences can affect 
the gear’s proper functioning. 

In principle, the equations which describe the 
“gearing” process between the generating trajectories 
(18) and (19) from the reference plane but “raised” 
with elevation h (see figure 2), and the surfaces of the 
helical flanks ABS  and CDS  (see (22), (23) and (24)). 
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Fig. 2. Worm gear with defined thickness 

In this way, the determining of interference 
zones assumes solving the equations systems of the 
two surfaces: 

- the helical surface for the two flanks (see 
equations (23) and (24)); 

- the cylindrical surface representing the 
geometric locus of the family of generating 
trajectories (see equations (18) and (19)) for λ=0. 

- the equations of all these surfaces must be 
reported to a same reference system; let this be 
X1Y1Z1. 

The conditions for the assembling interference 
study assume the determination of some constant 
values, firstly, the worm’s helical parameter. 

We assume that the gearwheel has k teeth (k 
integer) and, therewith, the gap between two teeth of 
the circle with radius Rr is equal with the tooth 
thickness. 

In this way, the circular pitch, pc, is: 

 2 r
c

R
p

k
π⋅

= . (25) 

Obviously, from the two centrodes rolling 
condition, the circular pitch (25) is equal with the 
worm’s axial pitch, so, the helical parameter results: 

 2 1
2

r rR R
p

k k
π⋅

= ⋅ =
π

. (26) 

The assembling interference is given by the 
impossibility to approach the toothed wheel to the 
conjugated worm. 

For the CD flank the interference determining 
conditions are (28), see (24) for the worm’s flank and 
(2) for the toothed wheel’s flank. 

The equations system has as unknown values: 
u, h. Among these, u is arbitrary value. 

So, the system is determined and the value of 
the h parameter, for which the interference emerges, 
can be established. 

In principle, the interference is the intersection 
curve between the helical flanks of the worm and the 
wheel’s flanks. 

The interference condition for AB  straight line 
segment: 

 
( )

( )

2

2

sin sin cos ;

sin cos cos ;

sin sin sin .

r r

r r

r r

R b r v u

R b R p v b

R b r v h

⎧ ⋅ ϕ− ⋅ ϕ+ ⋅ = −
⎪⎪− ⋅ ϕ⋅ ϕ+ ⋅ ϕ+ ⋅ϕ+ ⋅ =⎨
⎪

⋅ ϕ− ⋅ ϕ+ ⋅ =⎪⎩

 (27) 

The interference condition for CD  straight 
line segment: 

 

( )

( )

2

2

sin sin cos

cos sin ;
sin cos cos

sin cos ;

sin sin sin .

r r

r r

r r

R b r v

u b
R b R p v
u b

R b r v h

⎧ ⋅ ϕ− ⋅ ϕ+ ⋅ =
⎪
⎪= − ⋅ δ − ⋅ δ
⎪
− ⋅ ϕ⋅ ϕ− ⋅ ϕ+ ⋅ϕ+ ⋅ =⎪
⎨= ⋅ δ + ⋅ δ⎪
⎪ ⋅ ϕ− ⋅ ϕ+ ⋅ =⎪
⎪
⎩

 (28) 

The basic algorithm proves the difficulty to 
solve the interference problem in analytical way. This 
is due to the fact that the equations which describe the 
problem are transcendental equations. 

An easier way is the graphical one. In 
following is presented an algorithm and applications 
developed in a graphical design environment. 

 
4. GRAPHICAL METHOD 

A graphical method for determining the assembling 
interference was developed in CATIA. 

The imagined algorithm assumes that, starting 
from the known profile of the wheel, the axial worm’s 
profile is calculated. This stage is made using the 
kinematical method for rack-gear tool’s profiling [6]. 

Consequently, the worm’s axial profile is 
moved along the directrix helix using the SWEEP 
command. 

In this way, one of the helical surface’s flanks 
is generated. 

In the same file, where the helical surface is 
represented, the cylindrical surface of the wheel’s 
flank is generated. 

The intersection between the worm’s flank and 
the wheel’s flank will represent the interference curve. 
This curve is obtained with the INTERSECTION 
command. 

The coordinates of the points on the 
interference curve can be obtained defining an 
auxiliary plane at distance h from the XOY plane. The 
intersection between this plane and the interference 
curve can be obtained using again the 
INTERSECTION command and represents the 
searched point onto the interference curve. 

The coordinates of this point can be 
determined using the MEASURE ITEM command. 

The presented algorithm was applied for a 
worm with characteristic dimensions (see figure 1.b): 
Re=62.5 mm; Ri=56 mm; b=9 mm; H=5 mm; rr=60 
mm; z=1 start of worm; k=10 teeth of wheel and 
Rr=62.5 mm. 

The form and coordinates of the interference 
curve are given in Figures 3.a, 3.b and Table 1. 
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Table 1. Coordinates of points from the interference 
curve 

Crt. no. X1 [mm] Y1 [mm] Z1 [mm] 
1 62.411 9 5.0 
2 62.274 9 4.5 
3 62.128 9 4.0 
4 62.971 9 3.5 
5 61.802 9 3.0 
6 61.620 9 2.5 
7 61.420 9 2.0 
8 61.199 9 1.5 
9 60.952 9 1.0 

10 60.668 9 0.5 
 
In order to reduce the length of the interference 

curve it is possible to increase the worm’s diameter. 

The results for the interference curve in case of 
rr=120 mm are presented in Table 2 and Figure 4. 

Table 2. Coordinates of points from the interference 
curve 

Crt. no. X1 [mm] Y1 [mm] Z1 [mm] 
1 121.582 9 5.0 
2 121.492 9 4.5 
3 121.397 9 4.0 
4 121.296 9 3.5 
5 121.188 9 3.0 
6 121.072 9 2.5 
7 120.948 9 2.0 
8 120.814 9 1.5 
9 120.667 9 1.0 

10 - - - 
 

 

  
 a) b) 

Fig. 3. 3D model of the flanks’ surfaces: 
a) assembling interference; b) detail of the interference zone 

 
Fig. 4. Length of the assembling interference curve: a) rr=60 mm; b) rr=120 mm
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5. CONCLUSIONS 

An analysis of an interference process, in case of a 
gear worm is approached as a gear between the 
toothed wheel and the rack (the worm’s axial section), 
using the complementary theorem of the generating 
trajectories. 

An analytical support and, in the same time, a 
graphical algorithm developed in CATIA design 
environment are presented. 

A numerical example calculated using the 
graphical methodology is also presented. 

The graphical method allows changing the 
gearing parameters, as helical pitch, worm radius, 
rolling radius, etc. 

We can observe that increasing the rolling 
radius of the worm (rr) the length of the interference 
curve decreases. 

As it is visible from Tables 1 and 2, below a 
certain value of the wheel thickness (the h parameter) 
the interference does not appear. This value increases 
with the value of rr. For example, if rr=60 mm, the 
interference emerges for values of h above 0.5 mm 
(table 1) while if rr=120 mm the interference emerges 
for values of h above 1 mm (table 2). 

Moreover, if the wheel’s flank is inclined, the 
interference can be reduced, even avoided. 

ACKNOWLEDGEMENT 

This work was supported by a grant of the 
Romanian National Authority for Scientific Research 
and Innovation, CNCS – UEFISCDI, project number 
PN-II-RU-TE-2014-4-0031. 

REFERENCES 

[1] Litvin, F.L., Theory of Gearing, Reference Publication 
1212 NASA, Scientific and Technical Information Division, 
Washington D.C., 1984. 

[2] Oancea, N., Surfaces generation by enwrapping, Vol. 
I, II, „Dunărea de Jos” University Foundation Publishing House, 
ISBN 973-627-106-4, Galaţi, 2004. 

[3] Zhang Y., McClain B. and Fang X.D., Design of 
Interference Fits via Finite Element Method, International Journal 
of Mechanical Sciences, 42, pp. 1835-1850, 2000. 

[4] Pimsarn, M., Kazerounian, K., Efficient evaluation of 
spur gear tooth mesh load using pseudo-interference stiffness 
estimation method, Mechanism and Machine Theory, 37(8), pp. 
769-786, 2002. 

[5] He, G.P., Hu, C.B., Jin, L.,Yan, C., An, Z.W., Duan, 
H.Y., Investigation of mathematical model for machining of 
externally meshed noncircular gears and characteristics of their 
undercut, Journal of Lanzhou University of Technology, 2006; 

[6] Berbinschi, S., Teodor, V., Oancea, N., Kinematical 
Method for Rack-gear Tool’s profiling in CATIA Design 
Enviroment, International Journal of Modern Manufacturing 
Technologies, ISSN 2067–3604, Vol. II, No. 2, pp. 23-30, 2010. 

[7] Baroiu, N., Teodor, V., Oancea, N., A new form of in-
plane trajectories theorem. Generation with rotary cutters, Bulletin 
of the Polytechnic Institute of Iasi, Tome LXI (LXV), Fascicle 3, 
section Machine Construction, ISSN 1011-2855, pp. 29-36, 2015. 

[8] Markowski, T., Batsch, M., Tooth Contact Analysis of 
Novikov Convexo-Concave Gears, Advances in Manufacturing 
Science and Technology, vol. 39, no. 1, 2015, doi: 10.2478/amst-
2015-0004. 

[9] Radzevich, S. P., Kinematic geometry of surface 
machining, CRC Press, Taylor & Francis Group LLC, ISBN 978-1-
4200-6340-0 

[10] Piska, M., Sliwkova, P., Surface Parameters, 
Tribological Tests and Cutting Performance of Coated HSS Taps, 
Procedia Engineering 100 ( 2015 ) 125 – 134 


