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ABSTRACT  

DistanŃă 1 spaŃiu de 10 pt 
The aim of this paper is to offer a tool to study the discrete symmetries for 

gauge minimally coupled charged spinless field to curved space-time. In 

this order, is made an algebraic description of basic discrete symmetries 

as space reversal P, time reversal T charge conjugation and their 

combination. We extend a previous MAPLE package procedures set in 

order to study the influence of the particular C, P, and T discrete 

transformation spinless field. In the last section, is proposed a simple 

method to find discrete symmetries of field differential equations.  As an 

example of the application of the methods, we consider the discrete 

symmetries transformation of C, P, and T kind for a particular Gödel. 

Considering the Klein – Gordon – Maxwell – Einstein solutions, it is 

evaluated the electric current’s components and further the boson system 

electric charge.. 

Keywords: Klein – Gordon field equation, Maxwell equation, discrette 

symmetry trasnformation. 

 DistanŃă 1 spaŃiu de 10 pt. 
1. Introduction  

DistanŃă 1 spaŃiu de 10 pt 
Symmetry is the driving concept in 

particle physics. In Quantum Field Theory the 
particles are defined as finite dimensional irreps 
of the space-time and internal symmetry groups. 
In Statistical Mechanics the notion of symmetry 
has also played a very important role in the 
past, as a way of characterizing degrees of 
freedom and types of interaction.  

In the last three decades, field theories on 
curved manifolds with significant applications 
to Cosmology have been intensively 
investigated leading to various exciting results 
that shad quite a new light on our understanding 
of the Universe [1].  

The study of boson stars (BS) started 
with the work of Kaup [1] and Ruffini and 
Bonazzalo [2], who found asymptotically 
solutions of the Einstein-Klein-Gordon 
equations for spherically symmetric equilibrium 
state. 

The presence of dark matter has been 
established indirectly in a wide range of scale 
of the universe, from that of individual galaxies 
to the entire universe itself. Though direct 
measurements of the nature of the dark matter 

have not yielded any result, speculations on its 
composition vary from baryonic to non-
baryonic matter.  

Since the general-relativistic analytical 
study of the coupled field equations is of a real 
interest for a better understanding of different 
stellar configurations as well as for a 
numerical-functional combined iterative 
treatment which describes the dynamics of 
charged boson nebulae, a MAPLE package 
procedure set is welcome. The huge volume of 
computations and the necessity of checking the 
result were the main reason for a software 
algorithm.  

In the first section is revealed the 
MAPLE algorithm in order to underline the 
discrete symmetry transformations procedures.  

 
2. Fields equations on curved space-

time 
 

Considering a complex scalar field 
minimally coupled to a spherically symmetric 
space – time, in order to derive the Klein--
Gordon--Maxwell--Einstein system of equations 
should employee a pseudo-orthonormal tetradic 
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frame, { } 41,aae = , in order to have a 

Minkowskian metric tensor 

[ ]1111 −=η ,,,diagab                (1) 

For a charged massive boson, coupled to 
the electromagnetic field, the system is 
described by a Lagrangian density of the form 

 ( ) ab

ab

a,b, FF,,,LL
4

1
+ΦΦΦΦ=  (2) 

where the gauge covariant - read 

Φ−Φ=Φ aa|a, ieA           

and respectively 

 Φ+Φ=Φ aa|a, ieA               (3) 

The Maxwell tensor  

b:aa:bab AAF −=                  (4) 

is expressed in the terms of the Levi-Civita 
covariant derivative of the four-potential  

{ } 41,aaA = , i.e. 

ab
c

cb|ab;a AAA Γ−=                (5) 

The symbols ab
cΓ  are defined as 

( )d,aba,dbb,ad

dc
ab

c gggg −+=Γ
2

1
 

and represents  the Christoffel symbols. 
By varying with respect to different 

fields, we come to the Klein--Gordon--Maxwell 
(KGM) system of equations: 

 Building up the energy-momentum 
tensor [1, 2, 6, 9] it can be derived the Einstein 
equation 

 abab kTG =                          ,   (6) 

where the tensor   have the explicit form 
as.  

ababab RgRG
2

1
−= ,               (7) 

 
3. MAPLE procedures 

 

In order to study these discrete symmetry 
transformations, we extend a previous MAPLE 
packages [3, 5]. The main aim was to 
implement the algebraic description of basic 
discrete symmetries as space reversal P, time 
reversal T charge conjugation and their 
combination proprieties on the interacting 
fields’ systems study. In this way, it had to use 
our previous software approaching in order to 
succeed in writing down the Klein--Gordon—
Maxwell - Einstein system equation. In this 
section we shall describe only the additional 
software procedure parts. 

 The first step of the program starts after 
initializing the main used package, with a set of 

definitions for the entire set of necessary 
objects.  

 In the second level, it should be set the 
considered transformations parameters- charge 
conjugation, space reversal or temporal 
inversion or their combinations. This stage is 
necessary on order to minimize the amounth of 
used memory. In this way, the algorithm will 
run, following the same steps [2, 3], and, at the 
finish stage, could be made comparisons for 
computed magnitudes. 

 The kernel of considered discrete 
symmetries have the form 

 
> coord:=[        ]; 

> TransT_Polar:=proc(ax)  

         tr1:={coord[1]=xi, coord[2]=psi, 

coord[3]=zeta, coord[4]=-tau}: 

         dchange(tr1,ax); 

   end proc; 

 

> Trans_identic:=proc(ax)  

         

>tr1:={xi=coord[1],psi=coord[2],zeta=c

oord[3],tau=coord[4]}:  

         dchange(tr1,ax) 

   end proc; 

 

> SimT_Polar:=proc(ax) : 

         eq1:=TransT_Polar(ax): 

          Trans_identic(eq1): 

   end proc; 

 
In the third stage, using the MAPLE 

platform, should be compute the needed 
tranformed geometry elements as the first and 
second order derivatives of the metric tensor , 
the Christoffel symbols,  , the Riemann and 
Ricci tensors and finally, the Einstein tensor   
components: 

As in our previous works, it was 
introduced a pseudo-orthonormal tetradic 
frame,   with the metric tensor of Minkowskian 
space-time, (1). The transformation tensors   
and respectively, defined as in our previous 
papers [2, 5, 8]. 

Considering a complex scalar field 
minimally coupled to a spherically symmetric 
space – time, In order to study the proprieties 
of these kind of interacting fields, was 
considered the necessity of building a helpful 
software in order to succeed in writing down 
the Klein--Gordon—Maxwell system equation 
and to study the C, P and T transformation. In 
this section we shall describe the structure and 
the main features of the procedures of the 
formalism. 

The first part of the program starts after 
initializing the main used package, with a set of 
definitions for the entire set of necessary 
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objects. For example, using the MAPLE 
platform, one can write (for the particular case 
of using Cartesian coordinates) 

>coord:=[x,y,z,t]; 

>Mg:= array (1 .. 4 , 1 ..4 , symmetric, 

[(1,1)=g11(coord[1], ….coord[4])), 

(1,2) =g12 (coord [1] , coord[2] , 

coord[3] , coord[4]),...., 

………………… 

(4,4)=g44(coord[1],coord[2],coord[3],c

oord[4])]) 

>g:=create([-1,-1],op(Mg)); 

  
In this stage it could be set the 

considered transformations - charge, parity or 
temporal inversion. The algorithm will run, 
following the same steps, and, at the finish 
stage, could be made comparisons for computed 
magnitudes. 

In the second stage, using the MAPLE 
platform, should be compute the needed 
geometry elements as the first and second order 
derivatives of the metric tensor , the Christoffel 
symbols,  , the Riemann and Ricci tensors and 
finally, the Einstein tensor   components, as it 
follows: 

  
> D1g:=d1metric(g,coord); 

> D2g:=d2metric(D1g,coord); 

> Cf1:=Christoffel1(D1g); 

………………………… 

> Einstein1:=lin_com(1,Rc,1/2*Rsc,g); 

  

In order to get a simpler set of 
differential equations, it is more convenient to 
introduce a pseudo-orthonormal tetradic frame,   
with the metric tensor of Minkowskian 
spacetime, (1). The transformation tensors   and 
respectively  , defined in the following 
command lines, are needed to turn to the 
tetradic frame. 

 > Mgc : = array (1..4 , 1..4 , 

symmetric,[(1,1)=1,(1,2)=0……. (4,4)= -1]); 

> g_c:=create([-1,-1],op(Mgc)); 

> frame(g_c, h1inv, const_g, coord); 

> eval(h1_inv); 

………………………… 

> change_basis(g_c,h1,h1inv); 

 

 The definition of the gauge-covariant 
derivatives of the complex scalar field, (3), is 
an important step in building the system 
lagrangian and in writing down the KGM 
coupled equations. In order to get a coherent 
structure, the terms are defined as tensors. The 
main advantage of this form is the simplicity on 
the transformation between the two considered 

frames. The gauge fields { } 4,1=aaA   can be 

defined in a direct manner and, using the tensor 
structure of definition, it can be easily used in 

building the gauge derivatives of the scalar 
field. 

> P:=create ([], Phi (coord[1], 

coord[2], coord[3], coord[4])); 

> P_conjugate := create([] , conjugate 

(Phi(coord[1],….,coord[4]))); 

> P_bar_a:=partial_diff(P,coord); 

………………………… 

> A_gauge:=create([-1],array(1..4, 

[(1)=A[1](coord[1],……coord[4]), 

(2)=A[2](coord[1],coord[2],coord[3],co

ord[4]), 

(3)=A[3](coord[1],coord[2],coord[3],co

ord[4]),……. 

> P_bar_a_2:=prod(A_gauge,P); 

> P_coma_a:=lin_com(1,P_bar_a,-

I*E,P_bar_a_2); 

> P_bar_a_conjugate : = 

prod(P_conjugate,A_gauge); 

………………………… 
Further, using a tensor for the interaction 

term in the Klein - Gordon equations, the 
evolution equation for the complex scalar field 
Φ  reads: 

> prod(A_gauge,P_bar_a_conjugate); 

> J_Klein_Gordon1 :=prod 

(A_gauge_up, P_bar_a, [1,1]); 

> J_Klein_Gordon_temp :=prod 

(A_gauge,P); 

> J_Klein_Gordon2 := prod 

(A_gauge_up, J_Klein_Gordon_temp,[1,1]); 

> ........ 

> Klein_Gordon1 :=prod (g_inv, 

P_bar_a, [2,1]); 

> Klein_Gordon2 :=partial_diff 

(Klein_Gordon1 ,coord); 

> Klein_Gordon3 :=contract 

(Klein_Gordon2,[1,2]); 

> Klein_Gordon_kinetic := lin_com 

(1/det_g,Klein_Gordon3); 

> Klein_Gordon5: 

=prod(P_conjugate,P); 

> ........ 

> Eq_Klein_Gordon := 

Klein_GordonM=J_Klein_GordonM; 

 

The next step is devoted to the Maxwell 

tensor abF , defined in (4), and to the 

corresponding Maxwell equations (7). The 
currents and the interaction term are put in the 
same tensorial structure. 

 
> Fab1:=cov_diff(A_gauge, coord,Cf2); 

> Fba2:=permute_indices(Fab1,[2,1]); 

> Fab:=lin_com(1,Fab1,-1,Fba2); 
> ...... 

> JMaxwell2: =prod (P, P_coma_ 

a_conjugate); 

> JMaxwell3: =lin_com(1,JMaxwell1,-

1,JMaxwell2); 
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> JMaxwell4: =prod 

(g_inv,JMaxwell3,[2,1]); 

> JMaxwell: =lin_com(-I*E,JMaxwell4); 

………………….. 
 One may notice that these steps are 

sufficient to build the Maxwell equations and, 

by using the tensors: 1h  whose character is 

[+1,-1] and his invert - invh1  , one can turn to the 

initial frame system. 
  
> Fab_b:=cov_diff(Fab,coord,Cf2); 

> Fab_b1:=partial_diff(Fab_up,coord); 

> Fab_b2:=prod(Fab_up,Cf2,[1,2]); 

> ......; 

> JMaxwellM:=JMaxwell[compts]; 

> for i from 1 to 4 do 

eqMaxwell[i]:=MaxwellM[i]=JMaxwellM[i] 

end do; 

 
 At this point, an important achievement 

is the building of necessary Lorentz condition. 
In order to introduce the whole lagrangian of 
the system, given by (2), and to build the 
energy--momentum tensor involved in the 
Einstein equations one needs the following 
procedure part. This can generate a rank zero 
tensor-type object which can be employed in 

writing down the energy-momentum tensor, abT  

, given by (10):  
  

> L1:= prod (P_coma_a_conjugate , 

P_coma_a); 

> Lkinetic:= prod(g_inv,L1,[1,1],[2,2]); 

> L2:=prod (P_conjugate,P); 

> Lmass:= lin_com(m0^2,L2); 

> ........; 

> Tab:= lin_com(1,Tab1,1,Tba1,1,Tab2,-

1,Tab3); 

> J_Einstein:=l in_com(Kappa,Tab); 

  
Putting together (9) and the objects 

defined in previous steps of the algorithm, the 
Einstein equations (8) explicitly are: 

  
> EinsteinM:=Einstein1[compts]; 

> J_EinsteinM:=J_Einstein[compts]; 

> for i from 1 to 4 do : for j from 1 to 4 

do 

  EqEinstein[i,j ]:= EinsteinM[i,j] = 

J_EinsteinM[i,j]   end do : end do; 

> ....... 
Finally, one has to impose specific ansatz 

conditions, in order to obtain a set of simpler 
equations, easier to manipulate and of course, 
much interesting for didactic reasons. 

 In the last part of this short 
presentation, will be briefly discussed only 
procedures used in order to obtain a first order 
perturbative solution for the coupled field 

equations’ system. This approach starts with the 
physically reasonable assumption that the 
charged scalar field is the main source of both 
the electromagnetic and gravitational fields. 
Considering it, in the first instance, could be 
neglected the feedbacks of gravity and 
electromagnetism on the charged scalar source 
[2, 6]. 

 To succeed in this purpose, it has to 
build field equations in an Euclidean 
approximation, using null Christoffel symbol 
values for the field covariant derivative and 
null metric tensor functions. In a coherent 
approaching, it should be computed all the 
necessary elements for the Klein - Gordon - 
Maxwell system equations. 

 However, in the most studied cases, for 
an analytical approaching, can be obtained only 
approximate solutions of different rank. 

 
4. Specific results 

 

Let us consider a spherically symmetric 
configuration describe by a metric tensor of 
static conformal type, expressed in 
Schwarzschild coordinates as 

                   
( )

( ) ( ) 2222

22222

dtede

drdreds

)r(F)r(G

)r(H

−ϕ+

+θ+=        (7) 

The Christoffel symbols derived in this frame are 
 

                   ( ))r(He
r

−=Γ−=Γ
1

22
1

12
2  

                  ( ))r(He)r('G −=Γ−=Γ 33
1

13
3  

                 ( ))(
44

1
14

4 )(' rHerF −=Γ=Γ       (8) 

where we used 

dr

rdF
rF

)(
)(' =         and       

dr

rdG
rG

)(
)(' =  

   The Einstein tensor abG  has the following non-

vanishing components  
 

[ ] ( ))r(He)r('G)r('rF)r('F)r('G
r

G

2

11

1 −++=
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( )
[

])r('G)r('G)r('rH)r('rG

)r("rG)r('H
r

e
G

)r(H

+−+

++−=
−

2

2

44       (9) 

The Maxwell tensor  

    baabab AAF :: −=    

in the particular case of working in the minimally 

symmetric ansatz ),(11 trAA = , ),(44 trAA = , 

),( trΦ=Φ , has a  single non-vanishing Maxwell 

tensor (9) component is 

[ ]
)r(F)r(H

r,

)r(F)r(F

t,

)r(H

ee

AeAe)r('FAe

FF

441

4114

−−
−=

=−=

(10) 

Building up the energy-momentum tensor 

    
LFF

T

ab

c

bac

a:b:b:a:ab

η−+

+ΦΦ+ΦΦ=
.                 (11) 

where the energy-momentum tensor abT  has the 

explicit form 
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The explicit form for the Klein - 
Gordon equation is 
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   (12) 

Unde the time reversal and under parity 
transformation the left part of the Klein – 
Gordon equation is invariant while the right 
side is not. For a good corelations, it should be 
underlined that, under a combined 
transpfrmation as time, parity and charge 
conjugation, the Klein – Gordon and Maxwell 
equation are invariant. 
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MAPLE software und ablösbar krumm Raum  

unauffällig Veränderung 

 
Die Article Absicht ist anbieten ein sher gut Gerät ablösbar die 
unauffällig Veränderung. Hier ist ein Computerprogram vermehrt und 
es mochte aufrufen und aufbessern der  unserer dreite Computer 
program. Der Ausgang ist geprüft nur einen klassisch Einzelfall. Die 
Verhältnisen Musterung Feld sind zeit. 

 
  

Algoritm pentru profilarea corectivă a sculelor pieptene 

 

Scopul lucrării este de a oferi un instrument pentru studiul simetriilor 
discrete ale spaŃiilor curbe. În acest sens este realizată o descriere 
algebrică a simetriilor discrete de bază ce inversează spaŃiul (p), a 
timpului (T), compunerea sarcinilor şi combinarea acestora. Se 
realizează extinderea procedurilor pachetelor MAPLE anterioare. În 
final se propune o metodă simplă pentru determinarea simetriilor 
discrete ale ecuaŃiilor diferenŃiale ale câmpurilor. 
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