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ABSTRACT

The paper introduces a general procedure for noncircular gear design and
generation, based on Gielis’ supershape,as the gear pitch curve, and on the
simulation of the gear cutting process, using rolling method. The procedure
algorithm consists of the supershape geometry analysis, to identify and separate
convex curves from convex-concave ones, the selection of the proper tools
reccomended for “gear cutting process”, the limitation of the pitch curve geometry
variation, in order to avoid undercutting, and the simulation of rolling. As convex
noncircular gear generation was developed in a previous paper, the study is now
focused on the convex-concave gear virtual cutting, using a standard shaper cutter

and the process’ specific kinematics.
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1. INTRODUCTION

Noncircular gears keep challengingthe scientists
due to their ability of producing complex variable
speed movements in a simple, compact and reliable
way [1]. A curiosity for the old gear industry, with
complex geometry and dificulties in manufacture,
noncircular  gears  found limited industrial
applications. Nowadays, the facilities offered by
virtual modelling and simulation softwares and
advanced CNC machine tools, design and
manufacture of noncircular gears have become more
feasible [2] and encourage the expansion of their
applications [3], targeting possible substitutions of

cams, linkages, Geneva mechanisms, -electrical
servomotors etc.
Once thegear pitch curve is defined, an

importantfurther step is the generation of the tooth
flanks profiles. In this context, scientists used
different approaches, such as enveloping theory,
analytical generation or manufacturingsimulation.
Danieli [4] generated noncircular gears’ tooth
profiles, with constant pressure angle, by integrating a
differential equation that described the rolling
between the tool and the gear. To improve contact
between teeth, Danieli and Mundo [5] used a different
approach, by mentaining the pressure angle constant
for any given tooth, but variable from one tooth to
another. Gao et al. [6] divided the pitch curves of
elliptic gears into segments and for each segment they
used the local curvature radii to generate curvature
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circles. Based on these circles, they generated the
corresponding tooth profiles.

The enveloping theory, introduced by Litvin [7],
allowed the generation of noncircular gears’ tooth
profiles with the same tools used in standard gear
cutting process. Based on this theory, Litvin et al. [§]
generated elliptical gears with straight and hellical
teeth. The same theory was used by Chang and Tsay
[9], to generate tooth profile with a shaper cutter, and
by Bair [10], to generate circular arc elliptical gears
with a rack cutter and a shaper. Based on the
geometry principles for spherical engagement, Xia et
al. [11] obtained tooth profiles of bevel noncircular
gears.

Instead of deducting and solving complicated
meshing equations, Li et al. [12] generated
noncircular gears’ tooth profiles by simulating the
cutting process by shaper. The tooth profiles were
obtained from the intersection of the shaper profile
with the pitch curve’s isometric family of curves.

In this paper, the generation of the noncircular

gear is based on the following steps:
i) modelling of the noncircular gear pitch curve,
byGielis’supershape formula [13]. The supershape is
a highly versatile curve, defined by six parameters —
the length of the traditional ellipse semi-axes, a
multiplication factor of the variable polar angle and
three exponents —, whose variations lead to a wide
range of shapes for the gear pitch curves and thus,
multiple transmission ratio’s variation laws in a gear
train;
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ii) choisen of proper values for the supershape
defining parameters, considering the curvature of the
pitch curve and the avoidance of pointed vertex;

ii1) identification of pitch curve convexity and proper
selection of tools. Once the tool is defined, the
avoidance of undercutting is considered for the further
analysis of pitch curve geometry;

iv) simulation of noncircular gear cutting process.

2. PITCH CURVE GENERATION

In order to generate a pair of conjugated
noncircular pitch curves, two main hypothesis can be
considered: the definition of the desired transmission
function and the definition of the desired driving pitch
curve geometry. The approach of pre-designed pitch
curve geometry, also known as Generating Profile
Method, uses the equation of tranditional or modified
ellipse [14, 15], Fourier series [16] or various specific
monotonically increasing functions [17].

In the attempt of generalysing the generation
process of noncircular gears, the authors introduce the
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Gielis supershape equation to model the driving pitch

curve:
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where a, b are nonzero real numbers that define the
semi-lengths of the classical ellipse; # - a real number
that multiplies the polar angle and defines the number
of lobes of the supershape, ie its rotational simmetry;
n;, n, and n3 - real nonzero numbers that lead to
pinched, bloated or polygonal, symmetric or
asymetric shapes, depending on their values and
relationship.

By varying the six defining parameters of the
supershape, a wide range of planar curves can be
obtained (Tab. 1), but it is obvious that not all of them
can be used as gear pitch curves. The appropriate
selection of the supershape geometry, admitted as
pitch curve for noncircular gears, is based on the
limitation of the defining parameters’ variation, so
that pointed shapes and those with very small
curvature radii can be avoided.

Table 1. Supershape families
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Considering the supershape as a potential gear
pitch curve, the exponentsinfluence on the
dimensional homogeneity of eq. (1) is excluded by
parametrization, using the following
notations: & = a/m, si § = hfpz, where m is the gear
modulus.

As aresult, eq (1) can be written as:
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The problem of selecting proper parameters, in
order to avoid pointed shapes and those with very
small curvature radii, has been covered in a previous

paper [18].

3. IDENTIFICATION OF THE
CONVEX-CONCAVE PITCH CURVES

Noncircular gears’ pitch curves, as supershapes,
can be convex or convex-concave curves, based on
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the defining parameters’ values. Considering the
necesity to generate tooth profiles, in proper
conditions, the curvature radius of the supershape is a
priority in controlling undercutting. From the
mathematical expression of a planar curve’s curvature
radius, defined in polar coordinates:
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it results that convex curves are generated as long as
the curvature radius remains positive, respectively,
the function’s denominator:

arif) ‘}

A dedicated Matlab code allows the calculation
of the curvature radii, its evaluation relative to 0 and
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the identification of curve convexity, as function of

Figure 1 illustrates the block diagram of the
algorithm used to determine the variation domains of
parameters 7, and n; that lead to convex and convex-
concave pitch curves, respectively. In Tab. 2 are
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the supershape defining parameters.

presented values of the supershape defining
parameters that induce convex-concave pitch curves
with 1-3 lobes, scaled to correspond to a gear with 40
number of teeth and modulus m =2 mm.

- | convex pitch curve
(0}

1) - (eq. 2) |» [ 0.0 - (eq. 10) | @

YES convex-concave

pitch curve

Fig. 1. Determination of the pitch curve’s convexity

Table 2. Variation domains for exponents 7, and n; that lead to convex-concave pitch curves

Semi-axes length n n=1 n=3 n=5
2 (4.12,15] (11.8,15] -
a=b 3 (2.1,15] (5.44,15] (8.63,15]
4 (2.1,15] (3.06,15] (5.18,15]
2 (4.12,15] (11.8,15] -
a>b 3 (2.1,15] (5.44,15] (8.63,15]
4 (2.1,15] (3.06,15] (5.18,15]
A further analysis on the defining parameters A= % 1 7
variation is developed considering tooth profiles @z
generation with a shaper cutter defined by modulus m  and
and number of teeth z;. The undercutting appears on
the concave region of the curve, characterized by the - _'5; = b % Gop =
minimum radius, p,.;, (Fig. 2). = [i ;f:[ " in + fnve — v, ] )
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Fig. 2. Undercutting avoidance for teeth generation
with a shaper cutter

To avoid undercutting, spur gear generation’s
theory imposes that:

where
(6)

#.. , the adendum radius of the shaper, is expressed:

8.=K.. -smé,
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where k = 1, 2, 3; a, - the pressure angle of the

shaper.
8= Ry, -stndy )

.E;; , the adendum radius of the equivalent gear,
is expressed:

Fo==_1

e |2

(10)

and
.Iﬁ;, — 15;-.;; - I;PJF =

_ (11)
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where k = 1, 2, 3; a3 — pressure angle of the
equivalent gear; z, — teeth number of the equivalent

gear:
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= -
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-

-
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The validation of Eq. (5) leads to the
determination of acceptable variation domains for
exponents n, and n; as shown in Tabs. 3-6. The
following concluzions can be drawn:

— as exponent n; gets larger values, the acceptable
variation domains of exponents n, and n; increase;
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— an increase of the number of lobes implies the need  — if parameters a and b are different and there is an
of choosing a larger exponent n; odd number of lobes, open curves are generated.

Table 3. The variation of exponents n;, 1, n; and pitch curve examples for « = b and n =2
N e B o L

I8 I9 Il() I1| IIZ le I14 15]

|| - convex curve
[ ] - acceptable

- undercutting

Table 4. The variation of exponents n,, 1, n; and pitch curve examples for a = b and n =3

=2 HB %4 HS i6 %7 ES %9 HIO ill 12 113 14 15

[ ] - convex curve
[ ] - acceptable

- undercutting

Table 5. The variation of exponents n,, n,, n; and pitch curve examples for a#b and n = 2

n,=n|2 {3 ]|4 }5 i() %8 HO HIO i“ }12

17 13 14 15|
| | |

[ ] - convex curve

|| - acceptable

- undercutting

Table 6. The variation of exponents n,, n,, n; and pitch curve examples for a # b and n =3

=2 113 I4 IS I6 I7 IS jl?) ,IlU llll Il2

13 14 15]
I |

[ ] - convex curve
[ ] - acceptable

- undercutting
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4. TOOTH GENERATION BY
SHAPER

The simulation of gear manufacture process, in
case of convex pitch curves, are based on the use of a
standard rack cutter and the problem has been covered
in another paper [19]. As regard the noncircular
convex-concave gear generation, using a shaper
cutter, the “cutting process” is related to the following
coordinate systems (Fig. 3): OgXfYy is a fixed
coordinate system, with the origin in the first point of
contact, Ty, between the pitch curves of the gear and
tool, respectively, with Yy axis in the direction of the
common tangent to the curves, in Tp; O XY, is a
mobile coordinate system, rigidly attached to the gear,
with the origin in the polar center of the pitch curve;
0.X.Y. — a mobile coordinate system, rigidly attached
to the shaper, with the origin on X axis.

The simulation of the gear generation is based

on the following kinematics:
— the gear is rotated around it’s center O;, with
angular speed w,,, respectively angle y,, and translated
along axes Xy and Yy, on the distances x,, and y,,
respectively (Fig. 3):

a)
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where £(6;) defines the orientation of the tangent (t)
to the gear pitch curve, at current point,

rig, )
Rify) = erctg T3
iy
— the shaper is rotated with angular speed w,,
respectively angle y.:
si8, )

el ) = = (17)

where s(6;) is the distance of rolling, respectively the
length of the arc T,T:
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Fig. 3. Kinematics of gear generation with the shaper in initial position (a) and current position (b)

Table 7. Examples of noncircular gears with convex-concave pitch curves

a=b=1,n=4,n,=1,n,=n3=3,z=44

a=b=1,n=6,n,=1,n,=n3=2.8,z="72
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The kinematics parameters are calculated in
Matlab, by a precision of 10", and imported in
AutoCAD environment were the tooth flanks cutting
process is simulated using solid models and boolean
operations. The precision of the tooth flank profiles is
obviously influenced by the calculus in Matlab, the
rotational increment of the shaper and the complexity
of the solids manipulated in AutoCAD. Therefore, for
certain pitch curve geometries and tooth parameters,
the last tooth generated could exhibit an undesire
width. Solutions for a proper gear generation
simulation consist in a reposition of the shaper in the
gear center before any gear movement or in a partial
gear generation and multiplication of the gear sector
for simmetrical shapes. Examples of noncircular gears
generated with a shaper cutter (m = 2 mm, a = 20°)
are presented in Tab. 7.

5. CONCLUSIONS

Three aproaches are mentioned in literature as
regard to noncircular gear generation: enveloping
theory, analytical generation and simulation of the
gear manufacture. In this paper the simulation
alternative has been chosen, in the hypothesis of
defining the driving pitch curve as Gielis’ supershape.
Limitation of its six parameters variation is necessary
in order to i) exclude pointed shapes and curves with
very small curvature radii and ii) avoid undercutting,
considering specific tools reccomended by the pitch
curve geometry.

The paper is focused on convex-concave gear
generation that imposed: identification of gear pitch
curve geometry, ie selection of convex and convex-
concave curves is automatically made, analysis of
defining parameters that allowed proper convex-
concave supershapes, that could be used for
noncircular pitch curves, and development the
simulation of gear generation.

The simulation of gear generation process, by a
shaper cutter, is made in AutoCAD environment,
based on the interference of Matlab and AutoLISP
codes. The complex geometries of the solids
manipulated in AutoCAD and numerical approaches
for the kinematics parameters calculus in Matlab
recommend the simulation of gear generation as a not
very precise and fast solution to generate the tooth
flanks. For further investigations on gear
performances, the authors also developed an
analytical method for noncircular gear generation.
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