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ABSTRACT 

The screw compressor rotors are bounded by cylindrical helical surfaces, with 

constant pitch. The generation of these surfaces is possible to be done using disk 

cutter, whose peripheral surfaces are revolution surfaces. 

This paper proposes a method and an algorithm for profiling primary surfaces of 

the disk cutter, mutually enveloping with the helical surfaces of the rotor of the 

screw compressor.  

The algorithm proposes the substitution of the transverse profiles of the rotor by 

Bézier polynomials. 

  
KEYWORDS: helical surfaces, Bézier polynomial, meshing surfaces, disk 

cutter 
 

1. Introduction 
 

The profiling problem of disk cutter, tools bounded 
with revolution surfaces, is according to fundamental 
theorems of enveloping surfaces. 

In some situations, such as screw compressor 
rotors, due to the complexity of the shape and of the 
parametric equations, the shape to be obtained is 
difficult to handle.   

The frontal profile of the rotors to be generated 
using the rack generating, can be realized by the 
envelope method. 

 
2. The profile generation of the disk cutter 

 
The helical surfaces of screw compressors, male and 
female, are cylindrical helical surfaces with constant 
pitch. 

Generating these types of surfaces is achieved 
by milling (grinding) with tools bounded by surfaces 
of revolution like disk cutter type, Figure 1. 

Coordinates  systems are defined: 
● XYZ is the relative system to which is defined 

the  surface of the helicoidal lobe  to be generated (Z 

axis superposed to the rotor axis  V
�

); 
● XsYsZs - global system associated to disk cutter 

(Zs axis superposed of the disc cutter axis A
�

). 

The axes A
�

 and V
�

 admit as common 
perpendicular  the  axis X (Xs). The distance between 

the two axes, V
�

 and A
�

, is denoted by a. 

It is also noted α the angle between the axes Z 
and Zs, see Figure 1. 

Kinematics generation process involves the 
following movements: 

● I, II - the movement of the helical screw 
workpiece to be  generated, defined by helical 

parameter p1 and axis V
�

, for the male rotor (right 
helix), respectively, p2 female rotor (left helix); 

● III - the rotation of disk cutter (cutting 
movement). 

The peripheral surface of the disk cutter is 
determined   as an envelope to each helical rotor to be 
generated. 

The helical surfaces of the female rotor can be 
known by: 

- direct measurement of the points on the   
generator,  performed on a 3D measuring machine, if 
there is a physical  rotor; 

- the analytical forms of the rotor composite 
generator; 

-the substitution of the generators rotor, in cross 
section, by Bézier polynomials of inferior degree, 
generated through a known small number of points (3 
or 4 points). 

 
3. Helical surfaces of the female rotor 

lobes 
 

It is considered that the transverse profile of rotors is 
the result of enveloping with generating rack (the 
shape of the generating rack satisfies the specific 
requirements of a screw compressor rotor 
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construction: no singular points on the profile, 
asymmetry of the profile generator, meshing line 
closed and with minimum length). 

 

 
 

Fig. 1. The relative position of the rotor and disk 

cutter to be generated 

 
In Figure 2, is given the shape of the transverse 

profile of the generating rack, whose envelope is the 
cross section of the screw compressor rotors. 

The selection of the generating rack should lead 
to forms in cross sections of the screw compressor 
rotor capable to ensure: 

- a pronounced asymmetry of the profile shape 
in order to obtain a satisfactory flow [9]; 

- a closed meshing line between the compressor 
rotors in order to ensure the sealing in the  
compression chambers [9]; 

- a volume embedded between rotor lobes as 
low as possible; 

- the absence of singular points on the transverse 
profiles; 

- a better processing of the screw compressor 
rotors, by providing tools for generating profiles 
without discontinuities [8]. 

To define a complex profile of the generating 
rack, which consists of a basic set of profiles, see 
Table 1. 

 

 
Fig. 2. Crossing profile of the generating rack for 

generation of the female rotor 

 
● Determination of transverse profile of the female 

rotor 
Crossing profile of female rotor is presented in 

Table 1. 
Knowing the profile equations as transverse 

profile of the female rotor surface, can be determined 
the equations of the rotor lobes flanks, and hence, 
using one of the fundamental theorems of the 
enveloping surfaces [1], [2], [3] we can get the profile 
disk cutter to generate the gap between two 
successive lobes of the rotor. 

However, we can imagine a solution based on 
tangents method [4], for which, the problem may be 
easier to apply. 
••••The shape of the helical surface substitute for 

female rotor 
It is considered that the helical surface of the 

screw rotor compressor can be described as a set of 
cylindrical helical surfaces and constant step, 
knowing the cross section of the rotor. 

Thus, giving the coordinates of a cross section 
of the female rotor in the form: 

 

1 1

2 2

n n

2 2

2 2

2 2

X Y

X Y
G

X Y

=
⋮ ⋮

, (1) 

n is large enough. 
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Table 1. The analytical model of crossing profile of the female rotor  
Sg. Family of profiles Meshing condition Var. param. 

�AB  

( ) ( )

( ) ( )

2

2

2

2

2 0 2 r 0 2

r 2 2

2 0 2 r 0 2

r 2 2

X R cos ψ R c cos

R sin ;

Y R sin ψ R c sin

R cos ;

 = + ϕ − + ⋅ ϕ −

− ⋅ϕ ⋅ ϕ


= − + ϕ + + ⋅ ϕ −


− ⋅ϕ ⋅ ϕ  

tgψ
R

c

r2

0
2 −=ϕ

 

ψmin=0; 
ψmax= 

constructive 

BC  

( ) ( )
( )

( ) ( )
( )

2

2

2 2 max B r 2

B r2 2 2

2 2 max B r 2

B r2 2 2

X usin ψ ξ R cos

η R sin ;

Y ucos ψ ξ -R sin

η R cos ;

 = − ϕ + + − ⋅ ϕ +

+ − ⋅ ϕ ⋅ ϕ


= − ϕ + − ⋅ ϕ +


+ + ⋅ϕ ⋅ ϕ  

u
ξ tgψmaxBcosψmax

2 Rr2

ηB
Rr2

− + ⋅

ϕ = −

−

 

umin=0; 
umax= 

determined 

maxψ
2

π
β −=

 

�CD
 

( ) ( )

( )
( ) ( )

( )

2 1

2 1

2 1

2 1

2 0 2 r 0 2

r 2 0 2

2 0 2 r 0 2

r 2 0 2

X r cos ν R ξ cos

R η sin ;

Y r sin ν R ξ sin

R η cos ;

 = − + ϕ + − + ⋅ ϕ +

+ − ⋅ϕ + ⋅ ϕ


= + ϕ − − + ⋅ ϕ +

+ − ⋅ϕ + ⋅ ϕ
  

2r
R

10ηtgν
10ξ

2

+⋅
=ϕ

 

υmin=0; 

υmax

β
2

π
−=

 

�EF  

( )

( )

X r cos ν R ξ cos
2 0 1 2 r 0 2

2 2

R η sin ;
r2 2 0 2

2

Y r sin ν R ξ sin
2 0 1 2 r 0 2

2 2

R η cos ;
r2 2 0 2

2

  
= − ⋅ − ϕ + − + ⋅ ϕ +   

  

 

+ − ⋅ϕ + ⋅ ϕ   
  


 
= − ⋅ − ϕ − − + ⋅ ϕ +   

 
  
+ − ⋅ϕ − ⋅ ϕ    

 

2rR
20η1tgν

20ξ
2

+⋅
=ϕ

 

υ 1min=0; 

υ 1max

1β2

π
−=

 

FG  

( ) ( )

( )
( ) ( )

( )

2

2

2

2

2 1 2 1 F r 2

F r 2 2

2 1 2 1 F r 2

F r 2 2

X u cos β ξ R cos

η R sin ;

Y u cos β ξ R sin

η R cos ;

 = ⋅ ϕ + + − ⋅ ϕ +

+ − ⋅ϕ ⋅ ϕ


= − ⋅ ϕ + − − ⋅ ϕ +

+ − ⋅ϕ ⋅ ϕ  

2rR

Fη1ctgβFξ
1sinβ

1u

2

+⋅+−

=ϕ

 

u1min=0; 
u1max=determ. 

�AH
 

( )( )
( )( )

( )( )
( )( )

X ξ λ R cosr2 1 22

η λ R sin ;1 r2 2 2

Y ξ λ R sin2 1 r2 2

η λ R cos ;1 r2 2 2`

 = + ⋅ ϕ −

− − ⋅ϕ ⋅ ϕ

 = − − ⋅ ϕ +



+ − ⋅ϕ ⋅ ϕ  

22Y

1λ
2Y

22X

1λ
2X

ϕ

=

ϕ
ɺ

ɺ

ɺ

ɺ

 

10 1 ≤λ≤  

�GH
 

( )( )
( )( )

( )( )
( )( )

X ξ λ R cosr2 2 22

η λ R sin ;2 r2 2 2

Y ξ λ R sin2 2 r2 2

η λ R cos ;2 r2 2 2`

 = + ⋅ ϕ −

− − ⋅ϕ ⋅ ϕ

 = − − ⋅ ϕ +



+ − ⋅ϕ ⋅ ϕ  

22Y
2λ

2Y

22X
2λ

2X

ϕ

=

ϕ
ɺ

ɺ

ɺ

ɺ

 

10 2 ≤λ≤  
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Two adjacent points, the distance ds: 

 ( ) ( )
2 2

2i 1 2i 2i 1 2ids X X Y Y+ += − + − ≤ ε , (2) 

if ds is sufficiently small, 2 11 10 ...1 10ε − −= ⋅ ⋅ , is 
obtained: 

 
Y Y

2i 1 2itgβ
i X X

2i 1 2i

−
+

=
−

+

, (3) 

elementary segment slope determined by points 

[ ]
ii 22i Y,XM  and [ ]

1i1i 221i Y,XM
+++ , 

see Figure 3. 
 

 
Fig. 3. Elementary helical surface; coordinates 

systems 

 
Thus, elementary segment MiMi+1 is described 

by equations as follows: 

 2 2i i
i i 1

2 2i i

X X cos ;
M M

Y Y sin ,+

= + λ ⋅ β

= + λ ⋅ β
 (4) 

min max0;  dsλ = λ = , see (4). 

The segment MiMi+1 tangent has the follow 
director parameters: 

jsinβicosβT ii1iMiM

���
⋅+⋅=

+
. (5) 

Elementary helical surface is described in the 
helical motion (V, p2 ) (left helix), as follows: 

 ( )
2 2i

T
2 3 2 2i

2 2 2

X X 0

Y Y 0

Z 0 p

= ω θ +

− ϕ

 (6) 

or, 

 

2 2 2 2i i

2 2 2 2i i

2

2 2

X cos sin 0 X cos

Y sin cos 0 Y sin

Z 0 0 1 0

0

0 ,

p

θ − θ + λ β

= θ θ ⋅ + λ β +

+

− θ

 (7) 

where  θ2 is a variable parameter, and p2 – helical 
parameter. 

For l=0 (point Mi) - equations (6) is the helical 
line: 

 
2 2i 2 2i 2

2 2i 2 2i 2

2 2 2

X X cos Y sin ;

Y X sin Y cos ;

Z p .

= θ − θ


= θ + θ
 = − θ

 (8) 

Thus, the director parameters of the tangent to 
helical line (8), are calculated as follows,  

 
i

2 2
M 2

2 2

dX dY
T i j p k

d d
= + −

θ θ

� � ��
. (9) 

The director parameters of the tangent to helical 
line, for the point Mi, are calculated from (9): 

 

2
2i 2 2i 2

2

2
2i 2 2i 2

2

2
2

2

dX
X sin Y cos ;

d

dY
X cos Y sin ;

d

dZ
p .

d


= − θ − θ

θ


= − θ − θ
θ


= −

θ

 (10) 

Normal to the elementary helical surface, can be 
approximated, taking into account (4)...(9), in the 
form: 

 
i i 1 iM M MN T T

+Σ = ×
� � �

. (11) 

After replacement we obtain: 

 2i 2 2i 2 2i 2 2i 2 2

i i

i j k

N X sin Y cos X cos Y sin p

cos sin 0
Σ = − θ − θ θ − θ −

β β

� � �

�
 (12) 

or, the vectorial form, (11), 

 
2 2 2X Y ZN N i N j N kΣ = + +
� � ��

 (13) 

and the definitions: 

 

[ ] [ ]

2

2

2

X 2 i

Y 2 i

Z i 2i 2 2i 2 i 2i 2 2i 2

N p sin ;

N p cos ;

N sin X sin Y cos cos X cos Y sin .

 = β


= − β


= β − θ − θ − β θ − θ

 (14) 
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Knowing the expression of the director 

parameters of elementary helical surface (14), we can 
write the meshing condition, Nikolaev [2]. 

We define: 

-the disk cutter axis A
�

, 

kcosαjsinαA
���

⋅+⋅= ; (15) 

- vector O2S, 

1OO a i= ⋅
�

.  (16) 

The amount of a and α will be constructively 

defined, that the axis A
�

 is perpendicular to the 
outside helix female rotor, (De2 ), Figure 3: 

 
2 2

2 2

e e

2 p 2p
tan

D D

π
α = =

π
; (17) 

- p2 is the helical parameter; 
- a is the sum of the size of inner diameter of the 

rotor to be generated and outer diameter of the 
generating disk cutter. 

The condition for determining the feature of   
the elementary helical surface is: 

 ( )2N , A, r 0Σ =
�� �

, (18) 

where r2 is the vector from the current point 
(elementary helical surface) compared to O2S; 

 [ ]

[ ]

2

2 2i 2 2i 2

2i 2 2i 2 2 2

r r ai ;

r X cos Y sin i a i

X sin Y cos j p k.

= −

= θ − θ − ⋅ +

+ θ + θ − ⋅θ ⋅

�� �

� ��

� �
 (19) 

The meshing condition (18) becomes: 

( )
( ) ( )

( ) ( )( )
2 2 2 2 2 2 2 2 2 2i i i i

2 2 2 2 2 2i i i i i i

X cosθ Y sinθ a X sinθ Y cosθ p θ

p sinβ p cosβ X cos θ β Y sin θ β

0 sinα cosα

N,A,r

⋅ − ⋅ − ⋅ + ⋅ − ⋅

− ⋅ ⋅ ⋅ − + ⋅ −= ≤ ε
�� � ,(20) 

ε=(1x10-3). 
The points that satisfy the basic meshing 

condition (20) and belonging to the helical surface 
represent the characteristic curve - the curve of 
contact between the helical surface and the primary 
peripheral surface of the disk cutter.  

Be 

 { }
TC C C C

2 2i 2i 2iX X Y Z= , i=1...m (21) 

the matrix of points on the characteristic curve. 
The transformation of coordinates: 

 

C
2S 2i

C C
2S 2i 2i

C C
2S 2i 2i

X X a;

Y Y cos Z sin ;

Z Y sin Z cos ,

i 1...m.

 = −


= α − α


= α + α

=

 (22) 

move the coordinates of characteristic curve in the 
reference system belonging to the disk cutter, X 2SY2S 

Z2S. 
The axial section of the disk cutter is obtained 

from (22), in the form: 

 

2S

2 2
2S 2S

H Z

R X Y

i 1...m.

=


= +

=

 (23) 

The algorithm solves all areas of elementary 

helical surfaces, corresponding to all segments �AB , 

BC , �CD , �EF , FG , �GH , �HA , components of the 
rotor. 

 

NOTE 
If the distance between successive points along 

the generator is considered small enough (see (2)) 
these can be approximated the basic equations for 
helical surface case, λ=0. Thus, elementary helical 
surface is reduced to a helix and the surface generated 
is seen as a family of helical lines. This 
approximation significantly reduces the computation 
effort and processing time, to determine the 
characteristic curve and the axial section of the tool 
disk. 

The method is applicable to all segments of the 
arc of a helical surface. 

 
4. Numerical applications 

 
We present two frontal applications, different 

constructive solutions. 

٠First application (screw compressor, ratio 4/6) 

 
Table 2. The constructive date of the reference rack, (see Figure 2) 

R0 [mm] r0 [mm] umax[mm] ψmax[
0] υmax[

0] υ1max [
0] u1max[mm] Lp[mm] c0[mm] Rr2[mm] 

22.000 1.100 10.300 63.400 63.400 58.285 6.451 50.265 4.000 48.000 
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Table 3. The axial profile of disk cutter coordinates of female rotor 

 
Crt. 
no. 

R[mm] H[mm] Crt. 
no. 

R[mm] H [mm] Crt. 
no. 

R[mm] H 
[mm] 

Crt. 
no. 

R[mm] H 
[mm] 

1 47.786 -12.790 11 52.575 -10.917 21 57.217 9.849 31 52.136 11.664 
2 48.087 -12.370 12 53.092 -10.763 22 56.705 10.022 32 51.631 11.856 
3 48.462 -12.227 13 53.610 -10.612 23 56.195 10.196 33 51.128 12.050 
4 48.974 -12.055 14 54.129 -10.463 24 55.685 10.373 34 50.625 12.247 
5 49.486 -11.886 15 54.648 -10.316 25 55.176 10.551 35 50.123 12.445 
6 49.999 -11.719 16 55.168 -10.172 26 54.667 10.732 36 49.623 12.645 
7 50.513 -11.554 17 55.688 -10.030 27 54.160 10.914 37 49.123 12.848 
8 51.028 -11.392 18 56.210 -9.890 28 53.652 11.099 38 48.625 13.054 
9 51.543 -11.231 19 56.731 -9.751 29 53.146 11.285 39 48.136 13.281 

10 52.059 -11.073 20 57.253 -9.612 30 52.640 11.473 40 47.813 13.684 
 

10 20 30 40 50 60 70
-20

-10

10

20

0

[mm]

[mm]

H

R

 
Fig. 4. Female rotor – the tooth profile of disk cutter 

 
In the Table 3 are described the axial section 

coordinates of disk cutter for the female rotor. 
The flank of female rotor helicoidal surface is a 

helicoidal cylindrical surface, constant step, left helix, 
helicoidal parameter p2 and a R Rs 2int= + . 

 

Table 4. The geometrical constructive elements 

of the female rotor 

Rr2 [mm] 48.000 

Rint2 [mm] 26.034 

a [mm] 95.032 

p2 [mm] 28.649 

RS [mm] 68.998 
β [° ] 59.181 

 
Helical parameters are calculated with equation: 

 2 1

360 1
p D

2300 i

 
= ⋅ ⋅ 

⋅ π⋅ 

�

�
 (24) 

with i=4/6 or 3/5. 
 

 
Fig. 5. The geometrical constructive elements of 

female rotor 
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Second application (screw compressor, ratio 3/5) 
 
Table 5. The constructive data of the reference rack (see Figure 2) 

R0 [mm] r0 [mm] umax[mm] ψmax[
0] υmax[

0] υ1max [
0] u1max[mm] Lp[mm] c0[mm] Rr2[mm] 

22.000 2.000 7.045 70.300 70.300 35.054 7.774 62.832 4.000 50.000 

Table 6. The axial profile of disk cutter coordinates of female rotor 
Crt. 
no. 

R 
[mm] 

H 
[mm] 

Crt. 
no. 

R 
[mm] 

H 
[mm] 

Crt. 
no. 

R[mm] H 
[mm] 

Crt. 
no. 

R 
[mm] 

H 
[mm] 

1 45.609 -9.426 11 60.330 -6.429 21 65.681 4.944 31 50.284 11.476 
2 45.941 -9.027 12 60.847 -6.263 22 65.265 5.292 32 49.810 11.740 
3 46.450 -8.844 13 61.360 -6.088 23 64.831 5.617 33 49.336 12.005 
4 46.983 -8.743 14 61.869 -5.899 24 64.381 5.920 34 48.863 12.271 
5 47.517 -8.647 15 62.373 -5.699 25 63.917 6.201 35 48.391 12.537 
6 48.051 -8.554 16 62.872 -5.485 26 63.444 6.466 36 47.919 12.805 
7 48.586 -8.465 17 63.364 -5.257 27 62.960 6.712 37 47.445 13.073 
8 49.122 -8.379 18 63.849 -5.013 28 62.469 6.941 38 46.977 13.342 
9 49.658 -8.295 19 64.325 -4.753 29 61.970 7.155 39 46.506 13.612 
10 50.195 -8.215 20 64.790 -4.475 30 61.466 7.356 40 46.036 13.883 
 

 
Fig. 6. The solid of disk cutter for female rotor 

 
Fig. 7. Female rotor – the tooth profile of disk 

cutter 

 
In Table 6 are described the axial section 

coordinates of disk cutter for the female rotor. 
The flank of female rotor helicoidal surface, is a 

helicoidal cylindrical surface, constant step, left helix, 
helicoidal parameter p2 and a R Rs 2int= + . 

 
Table 7. The geometrical constructive elements 

of female rotor 

Rr2 [mm] 50.000 

Rint2 [mm] 27.442 

a [mm] 95.436 

p2 [mm] 33.742 

RS [mm] 67.994 
β [° ] 67.978 

 
Fig. 8. The geometrical constructive elements of 

female rotor 

 
Fig. 9. The solid of disk cutter for female rotor 
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6. Conclusions 
 
It was considered a constructive form of a 

helical screw compressor female rotor. 
Ratios studied were 4/6 and 3/5. 
To determine profiles generating disk cutter the 

method of tangents was applied. 
Solid models and the disk cutter were presented. 
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Metodă pentru profilarea sculei disc destinate prelucrării rotorului condus din 

componenŃa compresorului elicoidal 

 

—Rezumat— 

 
Rotoarele compresoarelor elicoidale sunt mărginite de suprafeŃe cilindrice 

elicoidale de pas constant. Generarea acestor tipuri de suprafeŃe este posibil a fi 
realizată utilizând freze disc a căror suprafeŃe periferice sunt suprafeŃe de revoluŃie. 

În prezenta lucrare este propusă o metodă şi un algoritm pentru profilarea 
suprafeŃelor periferice primare ale frezelor disc, reciproc înfăşurătoare cu suprafeŃele 
elicoidale ale rotoarelor compresorului elicoidal. 

Algoritmul propune substituirea ecuaŃiilor analitice ale profilului compus al 
secŃiunii transversale a rotorului cu polinoame Bezier de grad inferior. 

 
 

 


