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ABSTRACT 
In this paper, are presented analytical models of the flank faces of multi flute 

drills. Are analysed quantitative differences regarding the sharpening quality by 

variation law of flank angle along the major cutting edge. Numerical examples are 

presented. 
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1. Introduction 
 

For helical drills with curved cutting edges, created in 

order to uniformize the unitary energetical load along 

the major cutting edge, [2, 3], (see Figure 1) were 

imaginated some specifically sharpening methods: 

thoroidal sharpening [2], as well as, for multi flute 

drills, variants of conical sharpening [3]; cylindrical 

[4] and hyperboloidal sharpening [1]. 

 

      
 

 

Fig. 1. Multi flute drill with curved cutting edge  

 

There are some differences between these 

sharpening methods, regarding the generation 

kinematics and the results of flank face of the drill’s 

major cutting edge. 

If it is ensured the same geometry of the major 

cutting edge — the same variation law of the tool 

cutting edge angle, along the major cutting edge, the 

specifically sharpening method (cylindrical, conical 

or hyperboloidal) may lead to different values of the 

flank angle along the cutting edge and, in the same 

time, of the relieved flank surface, as it is presented 

by analytical models of the sharpening methods for 

straight lined cutting edge drills. 

 This paper proposes an analytical modeling of 

the geometrical surface which represents the flank 

faces of the curved cutting edge drills, for three of the 

presented methods (hyperboloidal, cylindrical and 

conical), the determination of the flank angle value, 

along the major cutting edge and, based on a specific 

software, the numerical determination of the variation 

law for the flank angle value along the major cutting 

edge, in order to make a comparison between the 

proposed sharpening methods. 

 The comparison between the sharpening process 

is made in conditions of the identical geometry of the 

major cutting edge, for all of the three proposed 

sharpening methods. 

 The analytical modeling, with numerical 

finalization of the flank angle value variation law, 

along the major cutting edge, may constitute a way to 

characterize other sharpening methods, as well as, for 

the evaluation of the reliev of the flank surface, as 

major aspect in order to establish the sharpening 

method quality. 

 

2. Sharpening methods kinematics 
 

It is analyzed the kinematics of sharpening methods 

for helical drills with curved cutting edges such as: 

hyperboloidal sharpening; conical sharpening and 

cylindrical sharpening. 

In Figure 2, is presented the generation 

kinematics for hyperboloidal sharpening and the 

position of the sharpened drill regarding this surface. 

 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAłI                                          FASCICLE V 

 

 

82 

 The sharpening method using a hyperboloidal 

surface consists in the successive forming of the 

hyperboloidal surfaces of the flank faces a, b, c, using 

an external cylindrical surface d of a grinding wheel, 

which execute a rotation A around its own axis.  

The flank surface sharpening of a cutting edge is 

made by composing a swing motion B of the drill, 

whose axis is perpendicular to the swing axis and is 

excentrical with value e regarding this axis, with an 

axial feed and intermittent motion C, which ensure the 

relieving of the flank surface, at a single positioning 

of the sharpened drill. In order to sharpen the flank 

surfaces b and c of the another teeth of the drill it is 

necessary to rotate the drill with 120°, and 

respectively 240°, resulting a circle arc cutting edge f. 
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Fig. 2. The generation kinematics for hyperboloidal sharpening 

 

 

The sharpening method using a conical 

surface consists in the successive forming of the 

conical surfaces of the flank faces a, b, c, using a 

frontal surface d of a grinding wheel, which execute 

a rotation A around its own axis, Figure 3.  

The flank surface sharpening of a cutting edge 

is made by composing a swing motion B of the 

drill, whose axis is perpendicular on the swing axis 

and motion C, which ensure the relieving of the 

flank surface, at a single positioning of the 

sharpened drill. 

 

 
Fig. 3. The generation kinematics for conical sharpening 
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The sharpening method using a cylindrical 

surface consists in the successive forming of the 

cylindrical surfaces of the flank faces a, b, c, using 

a plane surface d of a grinding wheel, which 

execute a rotation A around its own axis, Figure 4. 

 

 
Fig. 4. The generation kinematics for cylindrical sharpening 

 

The sharpening of the flank surface of a cutting 

edge is made by composing the swing motion B of the 

drill, whose axis may be aclived with angle 

2

π
β

 
− 

 
and excentrical with value e regarding an 

axis z, parallel with the plane face of the grinding 

wheel, with an axial feed and intermittent motion C, 

which ensure the relieving of the flank surface, at a 

single positioning of the sharpened drill. 

The cutting edge form results as ellipse 0β ≠ and is 

circle if 0β = . 

 

3. The analytical model of the back angle 
 

3.1. The hyperboloidal model 
 

It is accepted that the hyperboloidal rotation 

surface is generated by a straight line that belongs to 

the reference system X1Y1Z1 which has the following 

parametric equations, Figure 2: 
 

1 1 1

1

X Y Z  1

1

X u sin ;

: Y 0;

Z u cos ,

λ

∆

λ

= ⋅

=

= ⋅

 (1) 

 

with u variable parameter. In the rotating motion 

around the Z axis (Z – hyperboloid’s axis), of variable 

parameter ϕ , with R0 and λ  - design values: 

 

 ( )T
3 1 0

0

X X R ,

0

ω ϕ

  
  

= ⋅ − −  
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 (2) 

After substitution, 

 

0
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Y sin cos 0 R
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ϕ ϕ
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 (3) 

 

the family of straight lines is generated – the 

hyperboloidal surface: 

 

 
0

0

X u sin cos R sin ;

Y u sin sin R cos ;

Z u cos .

λ ϕ ϕ

λ ϕ ϕ

λ

= ⋅ ⋅ − ⋅

= ⋅ ⋅ + ⋅

= ⋅

 (4) 

 

 The (4) equations represent the analytical model 

of the setting surface of the drill’s main edge with 

curved edges. 

The back angle, 
xr

α , is defined in a plane 

parallel to the drill’s axis, in the measuring plane - 

normal plane on the base constructive plane, in the 

point considered on the cutting edge, Figure 5.  
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The base plane, the plane that contains the 

considered point, is in a point of the cutting edge and 

it is normal on the direction of the cutting motion, (the 

speed’s direction in point M, in the rotation 

movement of the drill).  

 The plane’s equation PM –  parallel plane with the 

drill’s axis (X2  axis) is (5): 
 

2
2 0 0

M 2 x x 2

x

d d
P : Y r cos Z

4 2

sin 0,

β

β

 
  − + ⋅ + − ⋅    

 

⋅ =

 

(5) 

 

with  
 

 0
x

x

d
arcsin .

2 r
β

 
=  

⋅ 
 (6) 

 

The hyperboloidal surface is related to the X2Y2Z2 

system through the transformation, see Figure 2: 
 

 
2

2

2 0
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Y Y e .
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 (7) 

 

Thus, the equations of the hyperboloidal surface – 

forming the back face of the main curvilinear edge of 

the drill, in the X2Y2Z2 system, have the configuration: 
 

2 0

2 0

2 0

X u sin cos R sin ;

A : Y u sin sin R cos e ;

Z u cos d / 2,

α

λ ϕ ϕ

λ ϕ ϕ

λ
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 (8) 

 

with u and ϕ - independent variable parameters.  

 The sizes R0, e, λ, d0 are definable as 

constructive sizes (technological constants). 

The intersection of surfaces – the measuring 

plane (5) and the hyperboloid (8) – both defined in the 

same system of reference, leads to the condition (9): 
 

2
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Independent variable parameter u is: 
 

2
2 0

0 x x
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(11) 

The equations of the hyperboloidal surface in the 

X2Y2Z2 system become (12): 
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(12) 

 

3.2. The conical model 

For the conical model, see Figure 3, from the 

equations (8), for 0R 0= , and  

 

 0H
0

dR
H
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we obtain the conical surface: 
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The similar condition (9) for conical model is: 
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Independent variable parameter u is: 
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and the conical surface becomes: 
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(17) 

 

3.3. The cylindrical model 
 

For the cylindrical model, see Figure 4, from the 

equations (8), for  

 

0 HR R= , 0λ = , (18) 
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we obtain the cylindrical surface: 
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The similar condition (9) for cylindrical model is: 
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Independent variable parameter u is: 
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and the cylindrical surface becomes: 
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 The ensemble of equations created from the 

setting surface (8), (14), (22) and respectively 

conditions (9), (15), (23) and the equations of the 

intersection curves of the setting surfaces with the 

measuring plane MP  will define the 
xr

α  angle, see 

Figure 5. 

 

4. Numerical applications 
 

There are presented applications of the algorithm for 

the determination of the flank angle for the three 

sharpening methods, in the conditions of respecting 

the major cutting edge geometry. 
  

 p t b 05 ;  60 ;  D 20 mm; d 2,4 mm.χ χ= = = =� �  

 

In Figures 6, 7 and 8, are presented the values for the 

flank angle, along the major cutting edge for all of the 

three presented methods. 

 

 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAłI FASCICLE V 

 

86 

 

 
Fig. 6. Variation law for the back angle size - 

hyperboloidal model 

 

 
 

Fig. 7. Variation law for the back angle size - 

cylindrical model 

 

 

 

Fig. 8. Variation law for the back angle size -  

conical model 

 

 

 
Fig. 9. Variation law for the back angle size –  

hyperboloidal, cylindrical and conical model 
 

5. Conclusions 
 

The presented methods allow determining the value of 

the flank angle, along the major cutting edge, 

according to the accepted definition. For all of the 

analysed sharpening method, the flank angle has 

values according to the tool’s type requirements. The 

hyperboloidal method ensures the largest value of the 

flank angle at drill periphery. The constructive 

parameters modification, the increasing of the 

working cutting edge angle, at drill periphery, pκ , 

and at drill top, tκ , as well as the core diameter of 

drill, 
0

d 0.12 D= ⋅ , have influence on the law of flank 

angle variation. 
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Modele analitice comparative ale procedeelor de ascuŃire 

 a burghielor multi-tăiş cu tăişuri curbe 
 

—Rezumat— 
 

Lucrarea prezintă, comparativ, trei procedee de ascuŃire pentru burghiele 

elicoidale cu mai multe tăişuri curbe, şi anume: ascuŃirea hiperboloidală, cilindrică şi 
conică. Modelele analitice ale muchiei de aşchiere şi ale formelor suprafeŃelor de 

aşezare sunt analizate din prisma îndeplinirii cerinŃelor minime ale unui procedeu de 

ascuŃire a burghielor: asigurarea mărimii unghiului de aşezare în lungul muchiei de 

aşchiere. Cinematica celor trei procedee de ascuŃire este simplă şi comparabilă cu 

cinematica procedeelor de ascuŃire cunoscute pentru burghiele standard, iar prin 

exemplele numerice analizate, se observă modul în care variază unghiul de aşezare 

în lungul tăişului principal, în sensul creşterii mărimii unghiului de aşezare de la 

periferie către vârf. 


