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ABSTRACT 

The profiling of tools bounded by revolution surfaces – disc tool, end mill tool 

and ring tool – is based on fundamental theorems of the surfaces enwrapping. 

There are situations when the surfaces are known by sampled points, often 

determined by measuring on coordinate measuring machines. 

There are known algorithms for the approximation of these discreet points, 

on the helical surface, using Bezier polynomials or B-spline curves. 

Such an algorithm is presented in this paper and relying on that algorithm 

and on the polyhedral representation of the surface measured software 

programming in Java language was realized. Certain numerical applications for 

profiling the disc tool or end-milling tool, reciprocally enwrapping with these 

surfaces represented by sampled points are also presented. 

  

KEYWORDS: helical surfaces known by sampled points, end mill tool’s 

profiling, polyhedral form, enveloping surfaces. 

1. Introduction 

The issue of tools profiling for the helical surfaces 

generated by enwrapping is well known, the solving 

of this problem calling for the fundamental theorems 

of the surfaces enwrapping, for the case when these 

are represented in analytical forms, 1
st
 Olivier 

theorem, [1], [2], [3]. 

There are also were presented complementary 

methods such as: the “minimum distance” method 

[3], the method of “substitutive circles” [3], the 

in-plane generation trajectories [4]. 

Moreoverly, the development of the 

capabilities of the graphical software, create the real 

possibility to solve fast and rigorously this problem 

[5], [6], [7], [8], [16]. 

Often, there emerges the issue of a 

non-analytical representation of surfaces, linkink with 

the application of reverse engineering, when the real 

surfaces of the pieces are known by direct measuring 

on 3D measuring machines. 

In this way, a problem appears of surface 

approximation and the problem of replacing these 

surfaces with an analytical surface as the best 

approximation of the measured points cloud, in order 

to allow the use of the known analytical methods. 

There are more solutions for this surface form 

expression, the identification of this [9], [10], and the 

following approximation, assuming that the surface 

type is known, [14], [15], with specific applications in 

generating tool profiling. 

Specific solutions are also presented for the 

construction of generating tool primary peripheral 

surfaces [9], [10], [12], [13]. 

Also, it is possible to imagine models based on 

the “minimum distance” method for enough points 

known as sampled points on a helical surface, to 

approximate, in a discrete form the characteristic 

curve of the helical surface in contact with a 

revolution surface reciprocally enveloping with these 

[17], [18]. 

In this paper, is proposed an approximation 

method for a measured surface by an assembly of 

in-plane surfaces and a specialized software, made in 

Java language, in order to profile the revolution 

surfaces bounded tools (disc tool, end mill tool, ring 

tool) reciprocally enveloping with the real surface 

replaced by this surfaces assembly – the polyhedral 

method. 
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2. The Method of Surfaces Polyhedral 

Representation 

The surfaces as they result from measuring 

using a device which determines the successive 

coordinates of the points, figure 1, may be regarded 

as being composed of a distinct grid of points along 

the measuring lines. 

 

 
Fig. 1. Real surface (surfaces represented by sampled 

points) 

 

We have to notice that, the measured points 

distribution along the real generatrix have to be dense 

enough to describe the surface between the limits of a 

certain measuring precision, accepted as rigorous 

from the technical point of view. 

Although, the points grid measured on the 

surface isn’t a uniform grid, the algorithm for the 

determination of the normal upon the surface isn’t 

affected, if the points number is big enough. 

In the previous by presented sense, a real 

generatrix “j” of surface may be represented by a 

matrix in form of: 
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Regarding (1), for the points mesh representing 

a zone of the surface the following expression is 

accepted: 
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The normal in a certain point of the real 

surface (2), be Mi,j this point, is defined as the normal 

to one of the polyhedron faces determined by points 

Mi,j; Mi,j-1; Mi+1,j; etc, see figure 2. 

Obviously, in the Mi,j considered points may 

be defined four normals, one for each of the 

polyhedron faces, with the point considered as the 

top. 

For example, starting from the neighboring 

coordinates on the point Mi,j: 
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Fig. 2. Normal to the polyhedral surface 

 

The following vectors may be defined: 
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as so as, 
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In this way, the normal at the in-plane surface 

determined by these points is 
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. (8) 

Similarly, are defined the normals draw to the 

others polyhedron surfaces with the top point Mi,j. 

An algorithm to scroll the successive 

generatrix of the measured zone, see (2), will allow to 

determine the normal vector at the in-plane surfaces 

formed in this way on the real measured surface. 

This mode to represent the measured surface, 

may allow, the determination of the characteristic 

curve of the surface in its global motion, rotation or 
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translation, linked to the generating tool’s type: 

revolution surfaces bounded tools (disc tool, end mill 

tool or ring tool); cylindrical tool (planing tool). 

 

3. Measured Surface’s Form Fitting 

It is possible when the number of points measured on 

the surface may not be too big, and when we suspect 

that the polyhedron form for measured surface is 

different to the real form of the measured surface, to 

make an adjustment of the measured surface’s form 

(fitting), in order not to appear discontinuities in the 

description of this surface. 

This may be realized based on specialized 

software, starting from the measured points cloud and 

obtaining a new points cloud, belonging, this time, to 

the fitted surface. Not all of the points of the new 

points cloud will represent measured points on the 

surface. 

After this new cloud is obtained by fitting, the 

matrix (2) is modified, defining a new approximation 

grid for the surface and new approximation forms of 

the vectors starting from point Mi,j, see (6) and (7) 

and figure 3, or similarly, from point mi,j, for the 

fitted grid. 

 

 
 

Fig. 3. Polihedral surfaces: initial grid (Mi,j; 

Mi+1,j; ...); fitted grid (mi,j; mi+1,j ...) 

 

In figure 3, with Mi,j, Mi,j-1, Mi,j+1 points were 

noted the initial grid nodes (measured points) and 

with mi,j, mi,j-1, mi,j+1 the nodes of the fitted grid. 

,Mi j
N


 and 
,i jmN


 were also marked as the 

vectors of the normals to the polyhedral surfaces with 

the top in the current Mi,j (mi,j) points, for the two 

forms of the initial and fitted grid, as they might be 

different. 

 

4. End Mill Tool 

Frequently, the generating tool of the helical surface 

described in the polyhedral form, may be realized as 

end mill tool, tool with the incident axis and 

perpendicular to the axis of surface to be generated, 

see figure 4. 

In the main, it is possible to consider that the 

end mill tool is overlapped to the A


 axis, if Y is the 

symmetrical axis of gap, 

 A j 
 

. (9) 

The position vector of the point Mi,j, from the 

substitutive polyhedral surface, has the form of, 
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, (10) 

with coordinates Xi,j, Yi,j, Zi,j give by (2). 

Consequently, the enwrapping condition 

becomes 
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with  3 21 10 1 10     , so, it is possible to 

determine, together with (2), an assembly of discrete 

points on , representing the characteristically curve 

form. 

The advance for the check of the following 

point in the process of defining the characteristic 

curve is to be decided by establishing the polyhedron 

face corresponding to the (11) enveloping condition. 

The assembly of the Mi.j points which satisfy 

the condition (11) represent the helical surface’s 

characteristic curve and, hence, the characteristic 

curve of the revolution surface which constitute the 

primary peripheral surface of the end mill tool.  

As a principle, the CS characteristically curve, 

may have a representation in the form of 
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By revolving of the characteristically curve 

(12) around A


 axis (Y axis), with  variable 

parameter, 
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the end mill tool’s primary peripheral surface is 

obtained, expressed as a circle’s family. 

The right choice for A


 axis position for a curl 

of helical surfaces (the case of the teethed wheel with 

inclined teeth) allows the simultaneous generation of 

the gap between the two successive teeth ranges. 
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In this case, the problem finality is the 

determination of the axial section of the end mill tool, 

see figure 4, 
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In the equations (14), by Xi,j, Yi,j, Zi,j, are 

denoted the coordinates of the characteristically 

curve, coordinates which on the helical surface (10), 

accomplish the condition (11). 

 

 
Fig. 4. End mill tool, tool’s axis position 

 

5. Fitting the Points Cloud of the Surface 

Measured 

The involute flank of a toothed-wheel is regarded as 

the measured surface of the flank of a cylindrical 

helical surface, as seen in figure 5. 

On the 3D measuring machine, 3D-Micro Hite, 

the coordinates of the points are determined, by direct 

measuring, on the succesive generatrix of a flank, as 

seen in figure 6. 

In the table 1, are presented the coordinates of 

points belonging to the successive generatrix 

(ZM=const.) measured on the surface, in the machine 

reference system (XMYMZM). 

 

 

 
Fig. 5. Measurement of the teethed wheel 

 

Table 1. Sampled points on the successive generatrix 

Line j Crt. no. XM [mm] YM [mm] ZM [mm] 

1 222.332 148.352 -450.206 

2 224.289 150.942 -450.207 

3 225.450 152.822 -450.207 

4 226.086 154.019 -450.206 

1 

5 227.149 156.324 -450.207 

          

1 221.968 147.720 -452.001 

2 223.809 149.664 -452.001 

3 225.382 152.003 -452.001 

4 226.496 154.047 -452.000 

5 

5 227.328 155.798 -452.000 

The assembly of the successive generatrix 

form the discrete surface of the flank to be generated, 

see figure 6, where the coordinates were processed by 

MatLab software’s Curve Fitting Toolbox. 

It is obvious that the measured surface isn’t a 

smooth surface and that the fitting of these is 

necessary in order to make a rigorous interpretation of 

the measured data. 

It is proposed that each generatrix should fit 

the polynomial form, meeting the following 

conditions: 

- the index 
2R  (adjusted R-square) to be 

closest to 1; 

- the second derivative of the substitutive 

polynomial equation to be straight lined (to be avoid 

the points on generatrix where the curvature have 

important variations); 
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Fig. 6. Measured points on flank 

 

In figures 7 and 8, are presented the forms of 

the polynomials for data fitting so as the first and 

second derivative, in different points of the fitting 

function, are calculated using MatLab Curve Fitting 

Toolbox. 

 

 
2

nd
 degree: R

2
=0.9984; 

 
3

rd
 degree: R

2
=0.9992; 

Fig. 7. Substitutive polynomial form 

From the analysis of the presented forms we 

may conclude that the adjusted R-square index have 

the value closest to 1 for a second degree polynomial 

approximation and, at the same time, the second 

derivative being linear, being eliminate the existence 

of points on the fitted generatrix where the curvature 

have important variations. 

Note: Obviously, for other forms of measured 

surface, the substitutive polynomial will have other 

forms. 

In the substitutive polynomial evaluation were 

used the MatLab software. 

In this way, all the generatrix may be fitted in a 

polynomial form. We make the notice that, regarding 

the coordinates of the measured points, the 

substitutive polynomials may not be of the same 

degree. 

 

 
2

nd
 degree; 

 
3

rd
 degree; 

Fig. 8. Second order derivative 

 

The form of the substitutive surface of the 

point’s cloud may be processed with MatLab 

software, making a denser grid of points which are 

nodes of the surface substitutive polyhedrons. In 

figure 9, is presented a screen capture of the surface’s 

mesh. 

The end mill tool for the generation of the gap 

between two teeth, assumed, see figure 10, 
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establishing the tool’s axis position — axis A


, as 

symmetry axis of the gap. 

It is necessary for that to know the two 

generatrix on each of the anti-homologous flanks, in 

the same plane parallel to the front plane, see figure 

11. 

In the same plane Z const. , the two flanks 

measured, for the measured points, are substituted for 

by profiles, known in the range of the superior degree 

polynomial curves as the intersection between the 

latter and a circle’s arc with an arbitrary radius 

determining the S points, and respectively D, on the 

chord of SD  arc. 

The straight line which links the points O and 

M (the midpoint of the SD  segment) is the symmetry 

axis of the gap between two teeth and may be selected 

as end mill tool’s axis — A


. 

In table 2, are presented the coordinates 

measured on the anti-homologous flanks of the 

teethed wheel. 

 

Table 2. Coordinates measured on the 

anti-homologous flanks of the teethed wheel (in the 

toothed wheel reference system) 

Right flank Left flank 
Crt. 

no. X [mm] Y [mm] Z [mm] X [mm] Y [mm] Z [mm] 

1 -7.7711 -75.012 0 2.7116 -67.047 0 

2 -6.3317 -73.465 0 3.8437 -69.557 0 

3 -4.818 -71.139 0 5.0703 -71.786 0 

4 -3.9539 -69.559 0 6.0886 -73.352 0 

5 -2.8767 -67.222 0 6.9605 -74.512 0 

 

For one of the profiles, the flank is substituted 

by a superior degree polyonomial, see figure 9. 

A new coordinate system, is admited, on 

whose basis the toot’s gap, X1Y1Z1 is reported, the Y1 

axis being the symetry axis of the gap between the 

two teeth, 

 

1

1

1

X cos sin 0 X

Y sin cos 0 Y

Z 0 0 1 Z

 

 

     
     

      
     
     

 (15) 

where  is determined by the relation 

 
M

M

X
tan

Y
   (16) 

 

 
Fig. 9. Measurd points and mesh grid 

 

In table 3, are presented the coordinates of the 

teeth flanks surfaces profiles coordinates, reported for 

the new reference system and fitted based on the 

Curve Fitting toolbox from the MatLab. 

Also, in figure 10, are presented the 

substituting forms for the teeth flanks, regarding the 

X1Y1Z1 reference system, with O origin of the 

reference system X1Y1Z1 (on the teethed wheel axis). 

The end mill tool for generation of gap 

between two teeth, presume, see figure 11, to 

establish of the tool’s axis — A


 axis, as symmetry 

axis of the gap. That presume knowing the two 

generatrix, on the anti-homologous flanks, in the 

same plane, parallel with the front plane, as seen in 

figure 11. 

 

Table 3. Coordinates of the teeth flanks surfaces 

profiles coordinates 

Line j Crt. no. X1 [mm] Y1 [mm] Z1 [mm] 

1 -8.407 -75.045 -2.000 

2 -6.501 -73.030 -2.000 

3 -5.082 -70.822 -2.000 

4 -3.963 -68.659 -2.000 

1 

5 -2.955 -66.306 -2.000 

          

1 -6.884 -74.789 2.000 

2 -5.357 -72.750 2.000 

3 -4.154 -70.796 2.000 

4 -3.332 -69.196 2.000 

5 

5 -2.353 -67.000 2.000 
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Fig. 10. The substitutive surface form 

 
Fig. 11. Determination of generatrix on 

anti-homologous flanks 

 

Table 4. Coordinates on the successive generatrix of 

the substitutive surface 

Line j Crt. no. X1 [mm] Y1 [mm] Z1 [mm] 

1 -8.500 -76.179 -2.000 

2 -8.400 -76.165 -2.000 

        

60 -2.600 -75.131 -2.000 

1 

61 -2.500 -75.107 -2.000 

1 -8.500 -76.107 -1.900 

2 -8.400 -76.089 -1.900 

       

60 -2.600 -75.051 -1.900 

2 

61 -2.500 -75.027 -1.900 

          

1 -8.500 -67.358 2.000 

2 -8.400 -67.308 2.000 

        

60 -2.600 -65.236 2.000 

41 

61 -2.500 -65.175 2.000 

 

For the points measured in the same plane, 

Z const. , the two measured flanks are substituted 

with profiles known by polynomial the curves of a 

superior degree as the intersection of these with a 

circle’s arc with arbitrary radius, determining the 

points S and D on the arc of the circle chord for the 

arc SD . 

The straight line which links the points O and 

M (the midpoint of the SD  segment) is the symmetry 

axis of the gap between the two teeth and may be 

selected as end mill tool’s axis. 

Also, in table 4, are presented the coordinates 

on the substitutive surfaces (fitted surface) of the 

point’s cloud measured on the surface. 

The input data for software, made in Java 

programming language, as numerical development of 

the previous proposed algorithm are: p=322.8 mm; 

Dex=150 mm; z= 26 teeth. 

 

6. Dedicated Software 

It was elaborated, based on the presented algorithm, 

in Java programming language, a software which 

allows the determination of the characteristic curve 

upon the contact between the helical surface and the 

end mill tool. 

It is possible to import the text file which 

represents the measured coordinates along the 

surface’s generatrix (or coordinates representing the 

fitted surface). 

Also, it is possible to define the constructive 

dimensions of the peripheral primary surface of the 

end mill tool reciprocally enveloping with the helical 

surface. 

The software gives the form and coordinates 

of the characteristic curve, on the surface, in the 

polyhedral expression, measured on the fitted surface. 

Also, the graphical representation of the characteristic 

curve measured on the involute teeth flank is made, 

see figure 12. 

 

 
Fig. 12. Applet for end mill tool’s profiling 

(characteristic curve) 
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Note: The applet allows to visualize the 

characteristic curve for various zoom levels. 

The number of points on the characteristic 

curve is defined according to the mesh for the surface 

and, also, according to the error level for the 

enveloping condition (see (11)). 

The software allow to calculate the axial 

section of the end mill tool by the command “Axial 

Profile” (see figure 13). 

 

 
Fig. 13. Applet for end mill tool’s profiling (axial 

section) 

 

In table 5, are presented the coordinates of the 

axial section at generation using an end mill tool. 

 

Table 5. Coordinates on axial section 

Crt. no. R [mm] H [mm] 

0 76.036 9.0078 

1 76.098 9.0809 

2 76.089 9.062 

3 75.937 8.8579 

4 75.964 8.8855 

5 75.955 8.8671 

6 75.946 8.8489 

7 75.973 8.8776 

8 75.964 8.86 

      

66 66.597 2.9108 

67 66.569 2.9069 

68 66.542 2.9039 

69 66.263 2.8018 

70 66.36 2.8504 

71 66.081 2.75 

72 66.054 2.7505 

73 66.151 2.8018 

74 66.124 2.804 

 

Coordinates showed in table 5, are determined 

by applying the presented algorithm and the software 

previously proposed. The unevenss of this point’s 

assembly representing the axial section need to fit 

these coordinates relying on a 4
th

 degree polynomial, 

which will assure a smooth form of curve. 

In this way, the axial section has the 

coordinates presented in table 6 and figure 14. 

 

Table 6. Coordinates on axial section after fitting 

Crt. no. R [mm] H [mm] 

0 66.124 2.7719 

1 66.256 2.8066 

2 66.388 2.8438 

3 66.521 2.8834 

4 66.653 2.9253 

5 66.785 2.9692 

6 66.917 3.0152 

7 67.049 3.0631 

8 67.182 3.1127 

      

67 74.849 7.6373 

68 74.981 7.7648 

69 75.114 7.8963 

70 75.246 8.0318 

71 75.378 8.1717 

72 75.51 8.316 

73 75.642 8.465 

74 75.775 8.619 

75 75.907 8.778 

 

The fitting errors determined using the 

MatLab Curve Fitting Toolbox are: R-square=0.9993;   

Adjusted R-square=0.9991. 

 

 
 

Fig. 14. End mill tool’s axial section 
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7. Conclusions 

The representation of the cylindrical helical surface 

with constant pitch, measured point by point on 3D 

measuring machines - polyhedral representation – 

allows to elaborate a software which leads to the 

determination of the characteristic curve upon the 

generation of the helical surface using the end-mill 

tool. 

The software allows the visualization of the 

characteristic curve form, determined in this way, in 

the graphical form. 

The unevenness of the measured points, along 

the surfaces generatrix may be improved using 

software which allows the fitting of the generatrix. 

The form in which is given the axial section of 

the end mill tool, allows the using of data on CNC 

machines, in order to profile the secondary order tool 

(the cutter for disc tool relieving). 
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Profilarea sculelor suprafeţe de revoluţie pentru generarea 

suprafeţelor elicoidale exprimate în formă poliedrală 

—Scula cilindro-frontală— 

 

Rezumat 
 

Profilarea sculelor mărginite de suprafeţe de revoluţie – scula-disc, scula 

cilindro-frontală, sculele inelare – se bazează pe teoremele fundamentale ale 

înfăşurării suprafeţelor. 

Sunt multiple situaţii în care cunoaşterea suprafeţelor pentru care este necesară 

profilarea unei astfel de scule generatoare, este în formă discretă, prin puncte, cel 

mai adesea determinate prin măsurarea pe maşini de măsurat în coordonate. 

Sunt cunoscuţi algoritmi pentru aproximarea acestor puncte discrete, pe suprafaţă, 

cu polinoame Bezier sau prin curbe B-spline. 

În lucrare, se prezintă un algoritm şi, în baza acestuia, un produs soft realizat în 

limbaj Java, bazat pe o reprezentare poliedrală a suprafeţei măsurate. Se prezintă 

aplicaţii numerice, pentru profilarea sculelor de tip disc sau cilindro frontale, 

reciproc înfăşurătoare acestor suprafeţe reprezentate în formă discretă. 

 

 

Profilage de la Révolution surfaces de l'outil pour la génération de surfaces 

hélicoïdales exprimée sous forme polyédrique 

 

Résumé 

 

Le profilage de l'outil de bornée être surfaces de révolution - outil disque, outils 

fraisage et outil anneau - est basée sur des théorèmes fondamentaux des surfaces 

enveloppants. 

Ce sont des situations où les surfaces sont connues par les points de l'échantillon, 

souvent déterminée par la mesure sur les machines à mesurer tridimensionnelles. 

Ils sont connus des algorithmes de rapprochement de ces points discrets, sur une 

surface hélicoïdale, en utilisant les polynômes de Bézier ou des courbes B-spline. 

Dans cet article, est présenté un algorithme et, sur cette base, le logiciel réalisé en 

langage de programmation Java, basé sur la représentation polyédrique de la surface 

mesurée. Ils sont présentés des applications numériques pour le profilage de l'outil 

de disque ou d'un outil de fraisage fin, réciproquement enveloppant avec ces 

surfaces représentées par des points échantillonnés. 


