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ABSTRACT 
 

In this paper we present methods for the assessment of B-spline functions for 

a given point, by means of tensor fields and methods for the selection of the initial 

data. On this basis, we developed different algorithms for testing the theoretical 

solutions we obtained. The assessment of a multivariable B-spline function is made 

by a two-steps algorithm, in each step being evaluated a B-spline function of one 

variable. In practice, the components of the vector or matrix of the control points 

are experimentally determined and, thereforetheir real value is not known except in 

a rough approximation. Considering the B-spline function depending on these 

values by minimizing operators as:    dttf
2

,     dudvv,ux
2

, 

     dvdwduw,v,ux
2

, out of the minimum necessary conditions for a 

multivariable function, we get homogenous linear algebraic systems, out of whose 

analysis we can obtain useful information on the importance of points which 

measurements are made on. 

  

KEYWORDS: B-spline function, tensorial fields, assessment algorithms, 

minimizing functional operators, control points, convex combination. 

 

1. Introduction 

 

Let us consider  
n,1kkeB   - the canonical base of 

the real linear space. 

The tensor of order zero is a scalar and the 

tensor of order one is a vector  tn21 u,...,u,uu   and 

therefore the tensor fields of order zero or one are 

scalar or vector fields. 

The tensor of order two is determined by a 

matrix  
n,1h

m,1kkhTT


 , where khT  are the components 

of the tensor T in the orthonormal basis hk ee  . 

The tensor of order three is given by a 3D 

matrix (with lines, columns and layers) 

 
p,1k

n,1j

m,1i
ijkTT





 , where ijkT  are the components of the 

tensor T in the basis  kji eee  . 

We also note the tensor product with  , and 

the contraction product of index i with  i . The last 

one produces a new tensor whose parts are to be 

found by summing the components of the two tensors 

after the common index, i. In [5] and [6] the above 

operations are presented as it follows:  

1) Being given  

    vuT,v,...,v,vv;u,...,u,uu
t

n21
t

m21 

is the tensors composition between u and v. T is a 

tensor of second order which has the matrix 

 
n,1h

m,1kkhTT


 , n,1h;m,1k,vuT hkkh  . 

2) If   ;v,...,v,vv
t

n21   
n,1k,jjkTT


 ,  then 

TvU   is a tensor of the third order:  

  n,1k,j,i,TvU;UU jkiijkijk  . 

3) Being given  
n,1j,iijTT


 ; 

 
n,1h,kkhUU  , UTW   is a tensor of the 

fourth order; 

  n,1h,k,j,i,UTW;WW khijijkhijkh  . 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V 

72 

4) If  tn21 u,...,u,uu  ;  tn21 v,...,v,vv  , 

then: u  uvuvv t
iii  , u vuvuv jjj  , that 

is the usual scalar composition. 

5) Given  
n,1j,iijaA


 ;  tn21 v,...,v,vv  v, 

then A A;Avvj   Avv t
i  . 

6) Given    ;bB;aA klij  n,1l,k,j,i  , then 

AT    ikj TABB  , ;baT jkijik  n,1k,i  . 

AT    jk
t

i TABB  , 

n,1k,j,abT ikjijk  . 

Note: A t
i BB   Aj . Generally, the 

contraction product of two tensors produces a new 

tensor whose order equals the sum of the two tensors 

orders minus two. A B-spline function of one real 

variable is expressed by means of a set of B-spline 

basis functions of a certain order which, in their turn, 

are convex combinations of B-spline basis functions 

of a lower order. Proceeding further, we come to a B-

spline function of order one which is 1 on an interval 

and 0 for the rest. Starting from here, in [4] we work 

out an assessing algorithm for the value of a B-spline 

function of one real variable in a given point. As 

multivariable B-spline functions are tensor products 

of B-spline functions of one variable, their assessing 

algorithm assumes the recurrence of the same 

calculation algorithm for each coordinate direction. In 

practice, the components of the vector (or matrix) of 

the control points are experimentally determined and 

therefore we do not know their real value, but an 

approximation of them.  

Considering that the B-spline function depends 

on those values and following the minimizing of some 

operators as:    dttf
2

,     dudvv,ux
2

, 

     dvdwduw,v,ux
2

 etc. 

It results linear equations systems out of whose 

analysis we can conclude on the importance of the 

points at which measurements are made. Using this in 

[2] we present the development of an algorithm for 

the on-line modeling of the thermo-mechanical fields’ 

dynamics of the technological systems. In [1] and [3] 

we deal with problems connected to computational 

and algorithmic aspects in designing curves and 

surfaces, useful in computer graphics, some of these 

being solved with the help of B-spline functions.  

Cutting process evolution is always 

accompanied and influenced by the existence of 

specific thermal and mechanical fields. For example, 

the thermal field, generated because the energy used 

during the process is transformed in heat and modifies 

the temperature in different structure points. Another 

example is structure deformation, meaning that each 

structure point moves in relation to its initial position, 

generating the displacements field. Among these 

fields there can be distinguished cause – fields (e.g., 

forces field), effect – field (e.g., deformations field) 

and behavioral fields (e.g., machining precision field).  

Most of the manufacturing systems thermo-

mechanical fields are multidimensional, generally 

speaking; for example, in every point owning to an 

accelerations field, we have the following dimensions: 

direction (meaning 3 parameters, in 3D), amplitude, 

frequency, phase, to whom the time (dynamics) 

always had to be addicted. It means that, to model 

such a field, we need to use appropriate multi-

dimensional models. 

The rest of the paper is structured as it follows: 

In Section 2, we formulate the problem of the 

assessment of a B-spline function in a given point and 

establish the importance of measurement knots. In 

Section 3, there are presented theoretical aspects 

concerning the B-spline functions. In Section 4, an 

example of application concerning the dynamics of a 

mechanical field modelling is shown. Last section 

concludes the paper on. 

 

2. Problem Formulation 

 

Thermo-mechanical fields found in the technological 

systems’ practice are defined along a line, a surface or 

in a three-dimensional space. In addition, the idea of 

adding the fourth dimension - the time - is permanent. 

Therefore the need of modelling a multi-dimensional 

field appears. In order to do that, we have to work out 

algorithms for the calculation of the coefficients 

which express the value of a one-dimensional field in 

a given point depending on the initial control points. 

By generalization, we obtain two-step algorithms for 

the approximation of the bi- or multi- dimensional 

fields in one of their points.  

Another problem, accounted for by practical 

grounds, is the reduction of the number of sensors 

where the measurements are made. To do this, we 

have to work out identity algorithms of the more 

influential (important) points. On the basis of the 

above mentioned facts, this paper is concerned with: 

 The recursive assessment of a B-spline function 

of one variable, in a given point, on the basis of the 

values measured in the initial control points (control 

points vector); 

 The identification of the most important control 

points by minimizing the operator    dttf
2

; 

 The assessment of a multivariable B-spline 

function in a given point on the basis of the values 

measured in the initial control points (control points 

matrix); 
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 The identification of the most important control 

points, by minimizing the operators     dudvv,ux
2

, 

     dvdwduw,v,ux
2

. 

 

3. B-spline Functions 
 

The recursive assessment of the one-dimensional 

B-spline function uses convex combinations, a fact 

which gives the assessment process a numerical 

stability. Based on the assessment algorithm of the 

one-dimensional B-spline function, by generalization, 

we can get two-step assessment algorithms of the two 

or more variables B-spline functions. By minimizing 

some functional operators, we obtain homogenous 

systems, out of whose analysis we can determine 

more important (influential) measurement points. 

 

3.1. B-Spline Functions of One Variable 
The set of „k+1” consecutive intervals, on 

which a basic B-spline  function, of order k is 

nonzero, is called its support. 

A B-spline function of one real variable is a 

polynomial segmentary function which is expressed 

using of a set of basic B-spline functions on each 

interval, related to a set of knots. Basic B-spline 

functions are chosen so that the number of supporting 

intervals to be as small as possible and an eventual 

modification of a point should affect only the 

neighbouring parts. Basic B-spline functions are 

obtained by a recursive process, as it follows:  

 
 



 




restîn,0

t,tt,1
tN

1ii
1,i            (1) 

     ,tN
tt

tt
tN

tt

tt
tN 1k,1i

1iki

ki
1k,i

i1ki

i
k,i 






 









k ≥ 2 . By means of basic B-spline functions, a  

B-spline function of order k can be written as:  

   



n

1i
k,ii tNdtf ,   (3) 

on the knot set there results  
kn,1iit 

. If we write: 

        
 

t

n21

k,nk,2k,1

d,...,d,dd

tN,...tN,tNtNN








  (4) 

then (3) can be written as a contraction product: 

  dtf   Ni     (5) 

Using the mathematical induction method, the 

following property can be proved:  

   knk

kn

1i
k,i t,tt,1tN 





   

 (6) 

Relying on this property, we infer that on the 

interval  1knk t,t  , the functions  tN k,i are positive 

and have the sum equal to 1, so they can be the 

coefficients of a convex combination. This ensures the 

numerical stability of the evaluation process of a  

B-spline function at a point  1ii t,tt  . 

To assess the B-spline function 

   
j

k,jj tNdtf  at a point  1ii t,tt  it is 

necessary to calculate the nonzero numbers 

  i,...,1kij,tN k,j  . 

Using the recurrence relationship (3), we can 

infer  tf , in relation to the basic B-spline functions 

of a lower order, as it follows: 
 

       

   



























































































i

1kij
1k,j1j

j1kj

1kj
j

j1kj

j
1k,j

j1kj

1kj
i

1kij
j

i

1kij
1k,j

j1kj

j
j

i

1kij
1k,1j

1jkj

kj
1k,j

j1kj

j
j

tNd
tt

tt
d

tt

tt
tN

tt

tt
d

tN
tt

tt
dtN

tt

tt
tN

tt

tt
dtf

 

 
If we note: 

  1j
j1kj

1kj
j

j1kj

j1
j d

tt

tt
d

tt

tt
td 





 







 ,  (7) 

we obtain: 

         



i

1kij
1k,j

1
j tNdtf ,  (8) 

or shortly     
i

1k,i
1
i tNdtf . 

Continuing the reasoning and recording:  

 
   




















 








0j,td
tt

tt
td

tt

tt

0j,d

td 1j
1i

ijki

jki1j
i

ijki

i

i

j
i  

(9) 

or 

        1j
1i

1j
i

j
i d1dd





          (10) 

where 
ijki

i

tt

tt








, we get: 

             
i

jk,i
j

i tNtdtf          (11) 
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But we have 

 
 

     1ii
1k

i
1ii

1,i t,tt,tdtf
restin,0

t,tt,1
tN 






 

  

and thus  tf  can be inferred from i1ki d,...,d   

relying on convex combinations (10). 

Consequently, first we have to find the index i 

for which  1ii t,tt  , and then we create a table for 

the recursive assessment of the B-spline functions. 

 

Table 1 Recursive assessment of B-spline functions 

 
   

     
       tdtd...tdtd

td...tdtd

...............

tdtd

td

1k
i

2k
i

1
i

0
i

2k
1i

1
1i

0
1i

1
2ki

0
2ki

0
1ki










 
Each entry in the table (except the first column which 

contains the initial data) is a convex combination of 

the two adjacent elements in the preceding column 

and the last term on the right bottom side   td 1k
i
  is 

the value of  tf  in point  1ii t,tt  .  

This algorithm can be used to compote the 

vector of coefficients expressing the value of a  

B-spline function  tf  in terms of the original control 

points. We seek coefficients  n
1ii   such that  

  



n

1i
ii

* dtf .

 

Algorithm 1: Calculus of  the vector  
n,1ii   so   




n

1i
ii

* dtf  for 1i
*

i ttt   

1. create the stocking matrix mat (k,k) and the vectors dp (k), dm (k), create the vector res for the stocking 

of  values i  

2. find the index ind so 1ind
*

ind ttt   

3. initialize  mat [0] [0] = 1.0 

4. for j = 0 to  k – 2 

       4.1     *t1jindtjdp   

       4.2    jindttjdm *   

       4.3 for i = 0 to  j 

            4.3.1        ijdmidp/jimattemp   

            4.3.2      temp*idp1jimat   

            4.3.3      temp*ijdm1j1imat   

5. for i = 0 to k – 1 

       5.1     1kimat1kindires   

 

In practice, the values of the parts of the 

control points vector  n21 d,...,d,dd  , are 

determined experimentally and, therefore, we do not 

know their real value but their approximation. 

Considering that the B-spline function depends on 

these values, we follow the minimizing of the 

   dttf
2

 operator. We set the extreme necessary 

condition    0dttf
d

2





 . We denote: 

   dtNNA t     
n,1j,iji dttNtN

     (12) 

where: A – mass matrix.  

 

We are thus led to a homogeneous system of n 

equations with n unknown elements for the vector of 

the control points d, of the form: 

        0Ad              (13) 

If rank A = r (for example, 

  0adet
r,1j,iijr 


), then r21 d,...,d,d  are main 

unknowns which are expressed depending on the side 

unknowns n2r1r d,...,d,d  . From a practical point of 

view, this means that n2r1r t,...,t,t   knots have a 

greater importance (are more influential) and, 

therefore, r21 t,...,t,t  can be eliminated.  

This is illustrated in the following algorithms: 

 

 

 

 

 

 



FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI 

75 

Algorithm 2: Computation of )t(N k,i , given i,  k and vec=(ti)i=1..n+k 

function N(i, k, t, vec) 

 1. create res for storage of return value 

 2. if k = = 1 

        2.1 if t ≥ vec(i) şi t < vec(i)  

             2.1.1 res = 1 

        2.2 else 

             2.2.1 res = 0 

 3. else 

        3.1 res = ( t – vec(i) ) / ( vec(i+k-1) – vec(i) ) * N(i, k-1, t, vec) + 

             ( vec(i+k) – t ) / (vec (i+k) – vec(i+1) ) *  N(i+1, k-1, t, vec) 

 

 

Algorithm 3: Computation of matrix A elements and of its rank 

1.  for i = 1 to n 

       1.1 for j = 1 to n 

            1.1.2 compute ai,j = intergral( )t(N k,i )t(N k,j , vec(1), vec(n))  

  using Algorithm 1 to compute the values of )t(N k,i  

2. compute the rank of matrix A  

 

 

3.2. B-Spline Functions of Two Variables  
Being two B-spline functions of one real 

variable:    



p

1i
k,i

1
i uNduf 1d  ui N on the set of 

nodes  
kpiiu

 ,1
,    




q

1j
l,j

2
j vNdvg 2d  vj N  

on the set of nodes  
lq,1jjv


, where: 

      tk,pk,2k,1u uN,...,uN,uNN  ; 

      tl,ql,2l,1v vN,...,vN,vNN            (14) 

are the basic B-spline functions corresponding to the 

functions f and g.  

A B-spline function of two variables is defined 

as the tensor product of two B-spline functions of one-

variable: 

        vgufv,ux 1d  i  t
vu NN   2j d .  (15) 

B-spline basis functions for (15) are the 

composition of tensors of B-spline basic functions for 

f and g. Allowing control points to take arbitrary 

values too, the general formula of a B-spline function 

of two variables is: 

 

      ddNNv,ux v
t
u   ui N  vj N ,          (16) 

where  

     
q,1j

p,1iijdd


            (17) 

is the matrix of the control points. 

Starting from here, the assessment of a B-

spline function of two variables, given a point   v,u  

is made through a two-steps algorithm: 

Step 1. We apply the assessment algorithm of B-spline 

function of one real variable to each of the columns in 

the control points matrix  
q,1j

p,1iijd


  using the knot set: 

 
kp,1iiu 

 and the u assessment point 
u . The result 

will be q points, one for each column.  

Step 2. We apply the same assessment algorithm given 

the q points resulted in step 1, using the knot set: 

 
lq,1jjv


 and the assessment point 

v . The 

resulting point is the value of  v,ux  in   v,u . 

On this basis an algorithm can be developed to 

evaluate a B-spline function of two variables at a 

given point. 

Algorithm 4: Computation of   v,ux  

1. for j = 1 to q 

       1.1 using algorithm 1 to compute the coefficients ij  so   



p

1i
ijijj

* dv,ux , for 1i
*

i uuu   

       1.2 using algorithm 1 to compute the coefficients j  so    



q

1j
j

*
j

** v,uxv,ux , for 1j
*

j vvv   
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Also, in the case of two-variables B-spline 

functions, the elements of the control points’ matrix 

 
q,1j

p,1iijdd


  could be considered variables, trying to 

minimize the     dudvv,ux
2

 operator. As 

  v
t
udNNv,ux   we further obtain the equation: 

  du)NN( t
uu  dj    0dv)NN( t

vvj . 

If

      
p,1j,iji

t
uuu duuNuNduNNA

   and 

      
q,1j,iji

t
vvv dvvNvNdvNNA

   we 

obtain, for the control points’ matrix d, the system:  

                                 0vudAA              (18) 

 

 

 

Algorithm 5: Computation of matrices ___

p,1j,i
j,iu )a(A



 , ___

q,1j,i
j,iv )b(A



  elements  

and of the matrix of the system Au d Av = O, rank, given u=(ui)i=1..p+k , v=(vj)j=1..q+l 

1.  for i = 1 to p 

       1.1 for j = 1 to p 

            1.1.2 compute ai,j = intergral( )u(N k,i * )u(N k,j , u(1), u(p))  

  using Algorithm 1 to compute the values of )u(N k,i  and )u(N k,j  

2.  for i = 1 to q 

       2.1 for j = 1 to q 

            2.1.2 compute bi,j = intergral( )v(N j,i * )v(N l,j , v(1), v(q))  

  using Algorithm 1 to compute the values of )t(N k,i  and )v(N l,j  

3. compute the rank of the matrix of the system Au d Av = O 

 

The analysis of system (18) can lead to 

conclusions about the influential points, in which the 

measurements should be taken, and can be used to 

develop an algorithm for their determination. 

 

3.3. B-Spline Functions of Three Variables  
A B-spline function of three variables can be 

defined as a tensor product of three B-spline functions 

of one variable or as the tensor product of a B-spline 

function of two variables and a B-spline function of 

one variable. If f, g, h are three B-spline functions of 

one variable    



p

1i
l,i

1
i uNduf 1d  ui N  defined 

on the knot sets  
lp,1iiu 
,    




q

1j
m,j

2
j vNdvg = 

2d  vj N  defined on the knot sets  
mq,1jjv


 and 

   



r

1k
n,k

3
k wNdwh 3d  wk N  defined on the knot 

sets  
nr,1kkw   where: 

      tl,pl,2l,1u uN,...,uN,uNN  ; 

      tm,qm,2m,1v vN,...,vN,vNN  ;          (19) 

      tn,rn,2n,1w wN,...,wN,wNN    

are the basic B-spline functions corresponding to the 

functions f, g, h, then 

 

 

 

  dw,v,ux   ui N  vj N  wk N           (20) 

is a B-spline function of three variables which has as 

its basic functions the tensorial composition of the 

basic functions of f, g, h and 

 
r,1k

q,1j

p,1i
ijkdd





             (21) 

represents the control points matrix.  

Similarly, given the B-spline function of two 

variables, we can also work out a two steps algorithm 

for the assessment of the function  w,v,ux  in a given 

point   w,v,u . 

Step 1. We apply the assessment algorithm of a 

two-variables B-spline function to each points layer of 

the control points matrix using the knot set 

 
lp,1iiu 
;  

mq,1jjv


 and the assessment point 

  v,u . The result will be r points, one for each layer. 

Step 2. We apply the assessment algorithm of a 

B-spline function of one real variable to the r points 

resulted in step 1, using the knot set  
nr,1kkw   and 

the assessment point w . Resulting point represents 

the value   w,v,ux .  

This allows the implementation of an algorithm 

for evaluating a B-spline function with three variables 

at a given point. 
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Algorithm 6: Calculation of  the value  x(u
*
, v

*
, w

* 
) 

1.  for k = 1 to r 

       1.1 use Algorithm 2 to calculate coefficients jk , so that    



q

1j
kj

*
jkk

** w,v,uxw,v,ux , for 

1i
*

i uuu  , 1j
*

j vvv   

2. use Algorithm 1 to calculate coefficients k , so that    



r

1k
k

**
k

*** w,v,uxw,v,ux , for 

1k
*

k www   

 
Similarly the B-spline function of two 

variables, trying to minimize the 

     dvdwduw,v,ux
2

 operator, having the elements 

of the control points matrix  
r,1k

q,1j

p,1i
ijkdd





  as 

unknowns, we obtain: 

  

  0dvdwduMdNN
d

dvdwduw,v,ux
d

2

wv
t
u

2












  

  
 

In tensorial notation this is written: 

 

  



d

d
 ui N  vj N  dudvdw)N 2

wk  =  

   d2  ui N  vj N  )Nwk

 dudvdwNNN t
w

t
vu  . 

In this way we get the equation:  

uA  di  vj A  0Awk           (22) 

and relying on it we can conclude the importance of 

the measurement control points. 

This can be put into practice through the 

following algorithm. 

Algorithm 7: Computation of matrices ___

p,1j,i
j,iu )a(A



 , ___

q,1j,i
j,iv )b(A



  , ___

r,1j,i
j,iw )c(A



 elements 

and of the matrix of the system Au i d j Av k Aw = O rank, given u=(ui)i=1..p+k , v=(vj)j=1..q+l , w=(wj)j=1..r+k 

1.  for i = 1 to p 

       1.1 for j = 1 to p 

            1.1.2 compute ai,j = intergral( )u(N k,i * )u(N k,j , u(1), u(p))  

  using Algorithm 1 to compute the values of )u(N k,i  and )u(N k,j  

2.  for i = 1 to q 

       2.1 for j = 1 to q 

            2.1.2 compute bi,j = intergral( )v(N j,i * )v(N l,j , v(1), v(q))  

  using Algorithm 1 to compute the values of )t(N k,i  and )v(N l,j  

3.  for i = 1 to r 

       3.1 for j = 1 to r 

            3.1.2 compute ci,j = intergral( )w(N j,i * )w(N l,j , w(1), w(r))  

  using Algorithm 1 to compute the values of )w(N k,i  and )w(N l,j  

4. compute the rank of the matrix of the system Au i d j Av k Aw = O 

 

4. Dynamics of the Elastic Return 

Mechanical Field of a Folded Piece 

Modelling 
 

The case of a piece of tin, obtained by bending 

in a die was considered (Fig. 1); the manufacturing 

method can be applied in two versions: with or 

without retaining the metal sheet during deformation. 

Notations of Fig. 1 have the following meanings: 1 - 

die, 2 - punch, 3 - retention plate, 4 - piece.  

It is known that after working through this 

process, when they are pulled from the die, the pieces 

undergo elastic recovery; it leads to a difference 

between the shape and size since the end of processing 

(fig.1-b, 1) and those after releasing the piece from the 

die  (Fig. 1-b, 2). 
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Fig.1. The manufacturing scheme 

 

Table 2 Network points co-ordinates 

Run X 

[mm] 

Y 

[mm] 

Z 

[mm] 

1 20.2222805 1.01142645 2.93657732 

2 20.2220116 2.03363919 2.93871427 

3 20.2213116 3.05495787 2.94191194 

4 20.2205658 4.07670498 2.94423175 

5 20.2194958 5.09782887 2.94783568 

6 20.2185631 6.11980772 2.95016265 

7 20.2171822 7.14081621 2.95249176 

8 20.2159843 8.16330910 2.95401502 

9 20.2146492 9.18423748 2.95697737 

10 20.2136822 10.2065163 2.96184993 

… … … … 

5419 49.9945183 79.2478180 105.399284 

5420 49.9937019 80.2482605 105.399307 

5421 49.9944992 81.2486801 105.399307 

5422 49.9947624 82.2.492523 105.399269 

5423 49.9960632 83.2493515 105.399292 

5424 49.9953613 84.2498016 105.399300 

5425 49.9959068 85.2496948 105.399338 

 
So, we are dealing with a mechanical field of 

deformations induced by the phenomenon of elastic 

return, which can be modelled (both actual and as 

dynamics) by using the new type of spline functions. 

On the sheet surface, before bending was traced 

a network of points whose coordinates were measured 

at the end of deformation and after removal from the 

die (after elastic recovery had occurred). For reasons 

of symmetry, only the left half of the piece was 

considered. Measured coordinates of points making up 

the network are presented in tables as Table 1 (this one 

includes details from the end of the bending without 

restraint). 

 
Fig.2. Worked piece before and after elastic recovery 

 

 

 
 

Fig. 3. Model of the difference function, based on the 

175 points, when bending without retention  

a – along z axis; b - along y axis 

 

For modelling the dynamics of the elastic 

recovery process, by using the new type of spline 

functions, the following methodology was used: 

 we have modelled both the state in the end of 

the process of bending (as initial reference state) and 

the state after the elastic return (as final state), based 

on the points measured coordinates; 

b) 
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 it was determined the difference function Δf, 

characterizing the transition from the initial state to 

the final one      z,y,xfz,y,xfz,y,xf fi  ; 

 the difference function was modelled using the 

new type of spline functions; starting from the 

observation that points arranged in planes x = ct (175 

in each plane) have identical behaviour, the behaviour 

of the difference function was examined only  in such 

a plane (Fig. 3, 4, for the case of bending without 

retention); we used successively all the 175 points 

and, respectively, only 5 among them, chosen as the 

most significant by using a genetic algorithm (Fig. 5, 

6 for bending without/with retention); 

 an addition was made between the known 

values, in the  reference state, and those obtained by 

spline modelling the difference function and then we 

compared the results to the situation as modelled on 

the first stage, based on the known values in all 175 

points. 

 

 
Fig. 4. Comparison between the interpolation into z 

direction based on 175 / 5 points (blue / red) 

 

 
Fig. 5 The 5 points selected by the genetic algorithm 

(* - Black), when bending without restraint 

 

 
Fig. 6 The 5 points selected by the genetic algorithm 

(* - Black), when bending with restraint 

 

Since the graphics for the second experiment 

(bending with retention) are very similar to those 

made for the first one, we have explicitly presented in 

this case, in order to make a comparison, only the 

position of the five representative points chosen by 

the genetic algorithm. 

We calculated the mean square deviation 

between the measured positions and those obtained 

by modelling of the 175 points considered and we 

found the value of 0.9222 (bending without restraint) 

and 0.4164 (bending with retention). 

 

5. Conclusions 
 

In order to model and identify the mechanical 

fields of different technological systems and their 

dynamics, we have to work out algorithms based on 

the coherence of these fields.  

To substantially facilitate the reduction of the 

number of sensors needed to dynamically check the 

thermo-mechanical fields, we have to find algorithms 

for the calculation of the more important 

measurement points, to use them for the adaptive 

management of the technological systems.  

The use of tensors easily permits passing from 

B-spline functions of one real variable to 

multivariable B-spline functions. The assessment 

algorithm of a B-spline function of one real variable, 

based on certain convex combinations, ensures the 

numerical stability of the process.  

Multivariable functions can be assessed by 

means of a two steps algorithm, each of the steps 

assessing a B-spline function of one real variable. The 

tensor approach of B-spline functions allows 

obtaining useful practical information about the 

importance of measurement knots, by minimizing 

some operators. 
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Modelarea câmpurilor multidimensionale pe baza tehnicii b-spline cu aplicaţii 

în monitorizarea erorilor de fabricaţie 

 

Rezumat 

 

În această lucrare sunt prezentate metode pentru evaluarea funcţiilor B-spline 

într-un punct dat, prin intermediul câmpurilor de tensori şi metode pentru selectarea 

datelor iniţiale. 

Pe aceste baze, am dezvoltat diverşi algoritmi pentru testarea soluţiilor 

teoretice obţinute. Evaluarea unei funcţii B-spline de mai multe variabile este 

realizată printr-un algoritm în doi paşi, în fiecare pas fiind evaluată o funcţie 

B-spline a unei variabile. 

În practică, componentele vectorului sau matricii punctelor de control sunt 

determinate experimental şi de aceea acestea nu sunt cunoscute ca valoare reală ci 

doar aproximate. 

Considerând funcţia B-spline dependentă de aceste valori, prin minimizarea 

operatorilor ca:  
2

f t dt    ,   
2

x u, v dudv ,   
2

x u, v, w dudvdw , 

conduce la condiţia minimă necesară pentru o funcţie de mai multe variabile. 

 


