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ABSTRACT 

This paper presents an analytical model of a sharpening method for helical 

drill with curved edges, characterized by a main hyperboloidal shaped placing 

surface, with an edge with a fluctuating angle of incidence, decreasing along the 

cutting edge. Such a shape of the main cutting edge ensures an even, unitary 

energetic charge along the cutting edge. The analytical model of the cutting edge 

and of the shape of the back face is analyzed and conditioned to meet the minimal 

requirements of drills’ sharpening process: the size of the back angle along the 

cutting edge, obtaining relieving of the main back face at a single positioning of the 

tool, in relation to the sharpening surface. 

  

KEYWORDS: multi-edge helical drill, hyperboloidal sharpening, numerical 

modeling. 

1. Introduction 

A continuous path of research in the area of designing 

helical drills can be highlighted with the purpose of 

optimizing the geometrical parameters for the drill’s 

cutting edge of the blade, Anish [1], [2] or the edge’s 

shape, Fetecău [4], [5] that proposes a curved edge, 

also summarizing particular sharpening techniques. In 

the same sense, Dima [3], suggests a type of shape 

optimization for the curved  edge, carrying out an 

energetic charge model of the cutting points and 

arriving, in the end, at an adequate shape from this 

point of view. 

Analyses development for improving the main 

edge’s shape has led to a spatial edge model.[3], [5], 

[6]. 

These new geometries require new sharpening 

procedures of the main back face, ensuring a growing 

variation law for the back angle, from the periphery 

towards the tool’s axis, simultaneous with the 

decrease of the main angle of attack, from the tip of 

the tool towards its periphery [5], [7]. 

Also, a new method has to ensure o proper 

relieving of the main back face, from a single 

positioning of the drill on the sharpening device.  

A new shape is suggested, following a 

sharpening outline with simple kinetics (a minimal 

number of moves) and one which allows rigorous 

rendering of the sharpening process. 

2. The Fundamental Kinetics. The Back 

Face 

In figure 1, the shape of the sharpening surface is 

presented – a hyperboloidal rotation surface – and the 

drill’s position in relation to the sharpening surface.  

The main cutting edge is resulted from the 

conjunction of the undercut surface (the helical drill’s 

flute) with the sharpening surfaces. The main kinetics 

of the cutting process covers three moves: 

I – the swing motion of the sharpened drill in 

relation to the straight generating line of the grinding 

wheel; 

II – the feed motion of the sharpened drill 

along its own axis; 

III – the cutting motion  - the rotation of the 

grinding wheel around its own axis. 

The active generating line of the grinding 

wheel is straight and belongs to a rotation surface 

exterior to it. The generating line is separated from 

the sharpened drill’s axis and it is placed at the R0 

distance from the axis of the generated hyperboloid. 

It is suggested a model for generating the back 

face of multi-edge helical drills (three-edged drills) 

after a hyperboloidal surface, in the sense that the 

back face of the main curved edge belongs to a 

hyperboloidal rotation surface – figure 2, generated, 

in the swing motion of the drill, in relation to the 

straight generated line of the grinding wheel. 
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It is accepted that, the hyperboloidal rotation 

surface is generated by a straight line that belongs to 

the reference system X1Y1Z1 which has the following 

parametric equations, figure 2: 
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with u variable parameter. In the rotating motion 

around the Z axis ( Z – hyperboloid’s axis), of 

variable parameter 

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Fig. 1. The main kinetics of the hyperboloidal 

sharpening process 
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with R0 and   - design values, the family of straight 

lines is generated – the hiperboloidal surface: 
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The (4) equations represent the analytical 

model of the setting surface of the drill’s main edge 

with curved edges. The cutting edge of the main blade 

of the drill can be, depending on the acceptance 

conditions, a smooth edge belonging to a circle or to 

an ellipse on the surface of the hyperboloid, or, also, a 

spatial curve belonging to the same surface, if the 

drill’s flute shape can be achieved accordingly. 

As a first solution, see [6], a circular shape is 

accepted as the shape of the cutting edge, shape that 

is resulted from the intersection of the rotation 

hyperboloid (4) with a plane perpendicular on the 

rotation axis, see figure 2. Thus, the cutting edge can 

be an arch belonging to radius RH, the radius 

representing the transversal section of the 

hyperboloid. 

 

3. The Shape of the Cutting Edge 
 

For smooth planes - from (4), 

 Z = H  (5) 

with H arbitrary variable determined by technological 

reasons according to the size of the sharpened drill’s 

diameter, the restriction follows 
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Fig. 2. The hyperboloidal back face 
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 cosH u   , (6) 

see also figure 3, that determines the shape of the 

cutting edge 
HC , as intersection of the Z = H plane 

with the hiperboloidal surface: 
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0
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 (7) 

In another way, the equations (7) represent the 

circle 

 
2 2 2 2 2

0X Y H tg R    . (8) 

with the notation 

 

22

0

22

HRRtgH  
, (9) 

shape (8) represents the circle to which the cutting 

edge of the drill belongs. 

 
2 2 2

HX Y R  . (10) 

The shape of the cutting edge is defined in 

correlation  with the known geometric parameters of 

the edge: t - the size of the maximum angle of 

attack, at the tip; per - the size of the minimum angle 

of attack, at the periphery; 
D - the size of the back 

angle at the base of the drill. 

The cutting edge’s equations are put in relation 

to its own reference system, X2Y2Z2, see figure 3, in 

which, the X2 axis is the sharpened drill’s axis, 

through the transformation: 

  2X X b  , (11) 
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with e – constructive constant, determined by the 

geometry imposed on the main cutting edge. 

Thus, referring to the (7) shape, in the X2Y2Z2 

system, the cutting edge’s equations become (13): 
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4. The Variation Law for the Size of the 

Back Angle 
 

The back angle is defined
xr

  in a plane 

parallel with the drill’s axis, in the measuring plane – 

the perpendicular plane on the base constructive 

plane, in the point considered on the cutting edge, 

figure 4. 

The base plane, the plane that contains the 

considered point is in a point of the cutting edge and 

it is perpendicular to the direction of the cutting 

motion, (the speed’s direction in the M point, in the 

rotation movement of the drill). 
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Fig. 3. The reference system for the cutting edge 

 

In other words, with the figure 4 notations, 

the normal line to the measuring plane, in reality to 

the track of the measuring plane in the figure’s plane, 

has the direction: 
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rx – radius of the cilinder on which the M 

point is located, in which  the setting angle is defined;  

d0  - diameter of the drill’s core. 

The plane’s equation PM –  parallel plane to the 

drill’s axis (X2  axis) is (16): 
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Fig. 4. The measuring plane 
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It can be defined, now, the intersection curve 

of the back face of the main cutting edge 

(hyperboloidal surface), see equations (4), with the 

measuring plane. The hyperboloidal surface is related 

to the X2Y2Z2 system through the transformation: 
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Thus, the equations of the hyperboloidal 

surface – forming the back face of the main 

curvilinear edge of the drill in the X2Y2Z2 system have 

the configuration: 

 

2 0

2 0

2 0

sin cos sin ;

: sin sin cos ;

cos / 2,

X u R

A Y u R e

Z u d



  

  



    

     

  

 (18) 

with u and   as the independent variable parameters. 

The  sizes R0,  e, λ, d0  are definable as constructive 

sizes (technological constants). 

The intersection of surfaces – the measuring 

plane (16) and the hyperboloid (18) – both defined in 

the same system of reference, leads to the condition 

(19): 
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Fundamentally, the condition (19) establishes 

a geometric space in the X2Y2Z2 system, expressed 

through an algebraic connection between the 

parameters u and . 

Condition(19) can be expressed as such: 
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The ensemble of equations created from the 

setting surface (18) and the condition (19) is the 

equations of the intersection curve of the setting 

surface with the measuring plane
p

A  (21): 
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Evidently, it is most necessary for the x  

angle to meet the requirement: 
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Curve (21) is, evidently, a smooth curve, but 

the plane in which this is defined is not parallel to one 

of the reference planes. The back angle in M point on 

the cutting edge is defined between the tangent line 

(21), in the point on the cutting edge, the direction of 

the cutting motion (here a perpendicular plane on the 

X2 axis, that contains the same M point – figure 4),  

 X2= constant.  (23) 

If marked with 2 2 2, ,X Y Z
  
    - partial 

derivatives of equations (21), representing the 

direction parametres of the tangent line to this
p

A  

curve, then the setting angle is defined as: 
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The partial derivatives are defined (25): 
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The partial derivative is defined: 
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du

u
d




  , see (20), that is (26) 
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The geometric elements that determine the 

shape of the rotation hyperboloid, as they were 

previously defined, are: 

- the position of the sharpened drill’s axis, 

measured along the axis of the hyperboloidal surface, 

in relation to the minimal crossing section of the 

hyperboloid, H; 

- the size of the offsetting of the circle origin, 

to which the cutting edge belongs, in relation to the 

drill’s axis, e; 

- the size of the radius of the minimal 

transversal cut of the hyperboloid, constituent of the 

setting surface, R0; 

- the inclination angle of the hyperboloidal 

surface generator in relation to the hyperboloid’s axis, 

 . 

Determination of the size of these parameters 

is made in relation to: 

- the geometry of the shape of the cutting 

edge(the variation limits of the main angle of 

attack); 

- the size of the back angle at the drill’s 

periphery; 

- ensuring relieving of the back face, at a 

single positioning of the sharpened drill in 

relation to the hyperboloidal surface. 
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Fig. 5. The relieving curve 

 

5. Relieving of the Back Face 
 

The relieving of the back face is defined in 

connection with the intersection of the back face 

(hyperboloidal surface) with a coaxial cilinder unto 

the sharpened drill, figure 5. 

Thus, for the cilinder with the radius xr , the 

equation for the revolving cilinder is defined: 
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If the equation system for the back face (see 

(18)) is accepted, then, the condition of the 

intersection of the two surfaces, the cilinder and the 

hyberboloid, is obtained taking into consideration 

(28) and (18)  in the format: 
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Condition (30) has the significance of a second 

degree equation in the u variable (31): 
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By solving equation (31) the smallest solution 

for u is accepted. 

Relieving is defined as representing the 

difference between the X2 coordinates of the point on 

the cutting edge and the rest of the points belonging 

to the surface. 

Relieving is considered fulfilled, if for all the 

points of the back face, found at the xr distance from 

the drill’s axis, the following condition is met: 

 2 2M Mi

X X , (32) 

M – is the considered point on the tool’s edge. 

Assuring the condition of a certain variation 

law of the size of attack angle, along the main edge of 

the drill, the size of the RH and the e parameters are 

determined. 

Thus, see figure 3, from the system: 
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It results the calculation form: 



THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢI FASCICLE V 

122 

 

22

0

4 4

cos cos
H

per t

dD

R
 






; (34) 

 

22

0

4 4 cos
cos cos

t

per t

dD

e 
 



 


. (35) 

Out of the relation 

 
2 2 2 2

0HR H tg R    (36) 

a connection is created among the hyperboloidal 

surface parameters H,   şi R0.  

 

6. Numerical Applications 
 

A numerical solution is proposed to resolve problems 

pertaining to the sharpening process, checking the 

relieving of the back face and determining the 

variation law of the setting angle’s size along the 

main edge, using the CATIA facilities. 

Based on the previously presented definitions, 

for a drill and a sharpenning surface having the 

following properties: 

D= 20 mm; per = 5
0
; t = 60

0
; R0= 4 mm; 

λ= 15
0
, in figure 6, the shape of the relieving curves, 

in the perpedicular planes on the drill’s axis is 

presented. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is obvious that in relation to the trajectory of 

the points on the edge, in the main cutting motion (the 

drill’s rotation around its own axis), for all point on 

the main edge, beveling of the setting surface is 

assured. 

In figure 7, the cylindrical cuts coaxial with 

the drill and the intersected curves with the back face 

are presented, which determine the size of the back 

angle, on the edge’s points, like the angle created 

between the tangent to the intersection line of the 

setting point with the cylindrical surface (the surface 

on which the drill’s cutting movements take place), 

the main motion and the feed motion (along the drill) 

and the plane perpendicular on the drill’s axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

In the figure, the back face’s model is 

presented (the hyperboloidal surface), intersection 

curves with the cylinder coaxial with the drill and the 

perpendicular plane, in one of the edge’s points on 

the drill’s axis. 

In figure 8 and 9 the variation law of the back 

angle’s size is shown, along the main drill’s edge. 

In table 1, are presented the values of xr  and 

 . 
 

Table 1. The xr  and   values 

xr [mm]  [
0
]  xr  [mm]   [

0
] 

9.54 25.781 7.253 31.567 

9.266 26.345 6.225 35.338 

8.788 27.4 5.056 41.283 

8.113 29.065 3.802 51.577 

 
 

Fig. 6. The shape of the relieving curves 

 

 
Fig. 7. Cylindrical cuts and the intersection  

curves with the drill’s setting surface 

Cylindrical cuts and the intersection  

 



FASCICLE V THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALAŢ 

123 

 

 

7. Conclusions 

The proposed hyperboloidal method of 

sharpenning creates a variable angle of attack along 

the main edge, the shape of the edge being a sector, 

thus, ensuring a constant unitary energetic charge in 

all the points on the edge. The positioning of the 

drill’s axis allows the production of the angle of 

attack  along the main edge, with regard to the 

limiting-conditions of the maximum( t ) and the 

minimum( per ) sizes. 

The relieving conditions of the entire main 

back face are ensured for a single positioning of the 

drill in relation to the back face. 

The back angle has high value along the main 

cutting edge, thus ensuring a well functioning angle 

of attack. 

Although the size of the back angle at the 

periphery of the tool is wider resulting in a narrow 

cutting edge, the detached fragment is thin and thus 

the drill’s cutting action is adequate. 

The kinetics of the process is simple with a 

small number of necessary moves. 
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Procedeu de ascuţire hiperboloidală a burghielor cu tăişuri curbe multităiş 
 

Rezumat 

 

Lucrarea prezintă un model analitic al unui procedeu de ascuţire a burghielor 

elicoidale cu tăişuri curbe caracterizat prin aceea că suprafaţa de aşezare principală 

este de formă hiperboloidală cu un tăiş cu unghi de atac variabil, descrescător în 

lungul muchiei de aşchiere. O astfel de formă a muchiei de aşchiere principală 

asigură o încărcare energetică unitară uniformă în lungul muchiei de aşchiere. 

Modelul analitic al muchiei de aşchiere şi a formei suprafeţei de aşezare este 

analizat din condiţiile îndeplinirii cerinţelor minime ale unui procedeu de ascuţire a 

burghielor: asigurarea mărimii unghiului de aşezare în lungul muchiei de aşchiere, 

realizarea detalonării suprafeţei principale de aşezare la o singură poziţionare a 

sculei în raport cu suprafaţa de ascuţire. 

 


