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ABSTRACT 

Most of the existing methods for profile calculation of cutting tools that work by 
wrapping are based on the envelope theory. For instance, methodologies for the 
determination of the peripheral primary tool surfaces of tools such as disk, front mill 
and ring tools designed to generate helical cylindrical surfaces with constant pitch 
are very well established for the case when an analytical description of the surfaces 
to be generated is available (Olivier, Gohman).  
However, analytical representations of the surfaces to be generated are not always 
available. For instance, sometimes only a 3D discrete representation of the surface 
obtained from a three-dimensional numerical measuring machine or a faceted 
representation from CAD packages is available. In this paper, we propose a solution 
for the case when the surface to be generated is known only approximately at 
discrete points. Bezier polynomials are used to elaborate a specific methodology for 
profiling tools bounded by primary surfaces of revolution, which generate in the 
relative motion between the tool and the blank a helical surface. The results we have 
obtained suggest that the tool profile errors are small enough to be used in 
engineering applications. 
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1. INTRODUCTION 
 
The design of cutting tools bounded by surfaces 

of revolution for the machining of helical surfaces 
flutes represent a problem which can be solved 
analytically ([2] ,[6], [7]) or numerical [8]  using the 
enwrapping surfaces generation principles. The 
analytical methods based on the fundamental 
theorems of surfaces enveloping lead to rigorous 
determination of tool profiles such is the case for disk 
or cylindrical tools. 

In many practical applications the surfaces 
generated by enwrapping are not associated with a 
helical surfaces of teeth used for torque transmission 
for which a very precise profile is needed. 
Consequently, in certain cases such as helical drills or 
cylindrical milling cutters absolute rigorous flute 
generation is not always necessary ([3], [4], [5]). 
Approximate methods for the realization of a 
methodology for profiling using a discrete 
representation of the surface to be generated via 
Bezier polynomials [1], leads in these cases to 
acceptable error levels. 

In this paper, we develop specific algorithms for 
the profiling of disk-tools, reciprocally enveloping 

with helical flutes with constant pitch for the case 
when the surface generatrix is not known analytically 
but only by coordinates at a few points (as little as  3 
or 4). Comparisons with numerical results obtained by 
one of the rigorous analytical methods suggest that 
the error level is acceptable.  

 
2. DISK-TOOL PROFILING 
 
In many practical situations, one may know or 

measure only a small number of points (as little as 4 
points) along the planar generatrix of the surface to be 
generated. In these cases, the in-plane generatrix 
can be substituted by a small order (2 or 3) 
Bezier polynomials as illustrated in figure 1, 
where we  have considered that the generatrix 
belongs to the plane perpendicular to the axis of 
the  helical surface axis — V

r
 (Z axis): 

 ( );  ( ),X YX P Y Pλ λ= =  (1) 
where [0,1]λ ∈ , while ( )XP λ  and ( )YP λ  are Bezier 
polynomials used to approximate the generatrix G. 

Note that although in this case we consider the 
generatrix to be planar, the same methodology can be 
used when the generatrix is an arbitrary three-
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dimensional curve by using its projections on 
reference system planes. 

In the helical movement of axis V
r

 and 
helical parameter p, 

cos sin 0 ( ) 0
sin cos 0 ( ) 0

0 0 1 0

X

Y

X P
Y P
Z p

ϕ ϕ λ
ϕ ϕ λ

ϕ

−
= ⋅ + , (2) 

the helical surface of constant pitch can be expressed 
as: 

( ) cos ( ) sin ;
( , ) : ( ) sin ( ) cos ;

,

X Y

X Y

X P P
Y P P
Z p

λ ϕ λ ϕ
λ ϕ λ ϕ λ ϕ

ϕ

= ⋅ − ⋅
Π = ⋅ + ⋅

= ⋅
 (3) 

where λ and ϕ  are variables parameters. 
The λ parameter is known only for a 

reduced number of values (3 or 4) which in 
many cases approximate sufficiently well via 
Bezier polynomials the helical surface 
generatrix. For second order polynomials one 
can express the generatrix as: 

 
2 2

2 2

( ) 2 (1 ) (1 ) ;

( ) 2 (1 ) (1 ) .
X x X X

Y Y Y Y

P A C B
P

P A C B

λ λ λ λ λ

λ λ λ λ λ

= + − + −

= + − + −
 (4) 

Similarly, for third order  polynomials one can 
write 

 

3 2

2 3

3 2

2 3
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3 (1 ) (1 ) ;

( ) 3 (1 )

3 (1 ) (1 ) .
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P
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 (5) 

The coefficients ,, , ,X Y X YA A B B  
, , ,X Y X YC C D D  can be determined, in general, using a 

fitting method such as least squares from the reduced 
number of the actual points on the curve for which the 
coordinates are known. In the cases below we 
consider only a very small number of points such that 
direct determination of the coefficients is possible. 

From equations (3), (4) and (5), one can  
determine the approximate helical surface to be 
generated. While an approximation, this 
representation can be treated as an analytical set of 
equations. Consequently, it is possible to use the 
fundamental theorems of surfaces enwrapping to 
determine the peripheral surface of the tool which 
would generate by enwrapping the desired helical 
surface. The helical surface can be expressed 
generically as: 

 
( , );

( , ) ( , );
,

X

Y

X
Y
Z p

λ ϕ
λ ϕ λ ϕ

ϕ

= Π
Π = Π

= ⋅

 (6) 

where from (3) ( , )X λ ϕΠ ; ( , )Y λ ϕΠ  are 

 
( , ) ( ) cos ( ) sin ;
( , ) ( ) sin ( ) cos .

X X Y

Y X Y

P P
P P

λ ϕ λ ϕ λ ϕ
λ ϕ λ ϕ λ ϕ

Π = ⋅ − ⋅
Π = ⋅ + ⋅

 (7) 

The normal to the approximated helical surface 
( , )λ ϕΠ , can be written as 

 
0

X Y

X Y

i j k
N pϕ ϕ

λ λ

Π = Π Π
Π Π

rr r

r
& &

& &
. (8) 

Where Π&  denotes derivative with respect to 
either of the independent parameters. In vectorial 
form, the normal can be written as 

 X Y ZN N i N j N kΠ = + +
r r rr

. (9) 
The Nikolaev [6] enwrapping condition can be 

written as  
 ( )1, , 0N r AΠ =

uuur ur ur
 (10) 

where 
 ( ) ( )1 , ,X Yr a i j p kλ ϕ λ ϕ ϕ= Π − ⋅ +Π ⋅ + ⋅⎡ ⎤⎣ ⎦

ur r r r
 (11) 

 ( ) ( )sin cosA j kα α= − +
ur r r

 (12) 
and a and α are technological parameters as shown in 
Fig. 1. 

 
Fig.  1. The Nikolaev enwrapping condition 

The enwrapping condition (10) can be written in 
approximated form as 

( , ) ( , ) ( , )
0 sin cos

X Y Z

X Y Z

N N N
aε λ ϕ λ ϕ λ ϕ ε

α α
− ≤ Π − Π Π ≤

−

 (13) 

where ε is sufficiently small positive number. 
From (13) one can determine points belonging 

to the characteristic curve CΠ illustrated in figure 1. 
This would be accomplished for 3 or 4 values of the λ 
parameter, corresponding to the approximation 
polynomial level for the helical surface generatrix (4) 
or (5). For a second order polynomials the 
characteristic curve can be expressed as 

, 0 , 0 , 0

, 1/ 2 , 1/ 2 , 1/ 2

, 1 , 1 , 1

C C C

C C C

C C C

X Y Z

C X Y Z

X Y Z

λ λ λ
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= = =

Π = = =

= = =

= . (14) 

By expressing these coordinates in the tool’s 
reference system illustrated in figure 1, one 
determines these 3 or 4 points on the disk tool S, 

 ( ) ( )
( ) ( )

1

1

1

1 0 0
0 cos sin 0
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The disk tool’s characteristic curve is shown in 
Fig. 2 and can be written as a set of coordinates, 

 ( )1 1 1, , , 1, 2,3
C C C

X Y Z i
Π Π Π

⎡ ⎤ =⎣ ⎦ . (16) 

 

 
Fig.  2. Disk tool’s peripheral surface axial section 

To determine SA, the axial profile of the tool, 
one observes that: 

 
( )
( ) ( )

1 1

1
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;
1,2,3 ,

,

C
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i
i

A

i
i

Z H
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X Y R

Π

Π Π

=
=

+ =
 (17) 

for a second order polynomial, or i=1,2,3,4 for a third 
order polynomial. 

The process is thus completed: starting only 
from three or four points on the planar generatrix of 
the helical surface one can obtain an approximate 
profile of the required tool. This requires fewer 
computations than in the case of classical methods. 
Moreover, it allows for the determination of the tool 
profile even when the desired profile to be obtained is 
known only at very reduced number of points, such as 
obtained from measuring devices such as OMMs (on 
machine measuring). 

Finally, the results below suggest that the 
intrinsic approximation of the method is quite 
acceptable as the comparisons with results obtained 
using classical methods are very satisfactory. 

 
3. APPLICATIONS 
 
3.1. Helical surface with constant pitch 

with rectilinear generatrix profile 
 
We first assess the accuracy of the new method 

in the case of a disk tool used to manufacture a worm 
with straight line generatrix. 

In Fig. 3, are represented the reference system, 
the rectilinear generatrix and the characteristic points 
in this case: 

- XYZ is the reference system regarding which is 
defined the helical surface’s generatrix, Δ ; 

- characteristic points along the generatrix, 
[ ], ,A A AA X Y Z  and [ ], ,B B BB X Y Z ; 

- κ  — constant angular parameter; 
- 0d  — the diameter of cylinder coaxially.  
The helical surface to be generated is also 

shown. 

The substitution polynomial is a first degree 
polynomial and thus the generatrix equations are: 

 ( )
( )

0 ;
2

( ) 1 ;

( ) 1 .
Y Y

Z Z

d
X

Y A B

Z A B

λ λ λ

λ λ λ

=

Δ = + −

= + −

 (18) 

 
Fig.  3. Reference system. Helical surface’s generatrix 

 From the transformation(3) one obtains the 
approximated helical surface: 

 

( ) ( ) ( )

( ) ( ) ( )

( )

0

0
( , )

cos sin ;
2

sin cos ;
2

.

d
X Y

d
Y Y

Z Z p

λ ϕ

ϕ λ ϕ

ϕ λ ϕ

λ ϕ

= ⋅ −

Π = ⋅ +

= + ⋅

 (19) 

The normal to the approximated helical surface 
can be obtained using (8) and  (9) as: 

[ ] ( )

[ ] ( ) ( ) ( )

[ ] ( )

[ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

0

0

0

cos

cos sin ;
2

sin

sin cos ;
2

cos sin sin
2

sin cos cos .
2

X

Y

Z

Y Y

Z Z

Y Y

Z Z

Y Y

Y Y

N p A B

d
A B Y

N p A B

d
A B Y

d
N Y A B

d
Y A B

ϕ

ϕ λ ϕ

ϕ

ϕ λ ϕ

ϕ λ ϕ ϕ

ϕ λ ϕ ϕ

Π

Π

Π

= − −

⎡ ⎤− − ⋅ − ⋅⎢ ⎥⎣ ⎦
= + − −

⎡ ⎤− − ⋅ + ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= − − ⋅ ⋅ − ⋅ +⎢ ⎥⎣ ⎦

⎡ ⎤+ + ⋅ ⋅ − ⋅⎢ ⎥⎣ ⎦

 (20) 

Following the methodology one obtains  
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and the enwrapping condition (13) together with (19), 
determine the characteristic curve on the 
approximated helical surface. 

The coefficients of the first order polynomial 
can then be determined as shown in table 1. 

 
Table 1. The 1st order ploynomial 

t Primary profile λ  
Approximate 
polynomial 
coefficient 

At  
0A

A

A

t
Y Y
Z Z

=
=
=

 0  Y A

Z A

B Y
B Z

=
=

 

Bt  
[ ](

[ ] )

2

1/ 22

B A B

A B

t Y Y

Z Z

= − +

+ −
 1  Y B

Z B

A Y
A Z

=
=

 

 
3.2. Disk tool for helical drill’s flute 

generation 
 
The disk tool for the profiling of the helical drill 

flute shown in figure 3 can be determined. Consider 
the following data: external drill’s diameter, D=20 
mm; drill’s core diameter, d0=0.16⋅D=3.2 mm; 
distance between the tool axis and the drill axis, a=50 
mm; inclination angle of helix on the external drill’s 
diameter, / 6ω π= ; helical parameter of drill’s flute, 

2
Dp
tgω

=
⋅

. 

Coordinates of the four points (in YZ system) 
belonging to generatrix, are: A=[0; 0], B=[-4.23; 
-1.54], C=[-7.03; -3.18], D=[-10.0; -4.93].  

In table 2, we present the axial section of the 
disk tool calculated based on an analytical method of 
surface reciprocally enwrapping and by 
approximation with the Bezier polynomials. 

 

Table 2. 

Approximated 
profile 

Theoretical 
profile 

λ R 
[mm] 

H 
[mm] 

R 
[mm] 

H 
[mm] 

Error 
[mm] 

0.00 48.400 0.000 48.400 0.000 0.000 
48.338 1.053 48.343 1.058 0.007 
48.151 2.098 48.155 2.103 0.006  
47.840 3.126 47.841 3.126 0.001 

0.33 47.710 3.459 47.709 3.461 0.002 
47.404 4.127 47.401 4.127 0.003 
46.843 5.093 46.838 5.094 0.006  
46.157 6.016 46.154 6.014 0.003 

0.66 45.634 6.595 45.630 6.599 0.005 
45.342 6.884 45.339 6.888 0.005 
44.395 7.685 44.403 7.686 0.008  
43.306 8.405 43.311 8.409 0.007 

1.00 42.053 9.020 42.053 9.020 0.000 

 
The error is defined as the distance measured 

along the normal of the approximated profile to the 
theoretical profile regarded as reference. 

In Fig. 4, the axial section of the disk-tool 
primary peripheral surface is shown. 

 
Fig.  4. The axial section of disk-tool primary 

peripheral surface 

The error between the two axial sections of 
disk-tool is very small, so the method although 
approximate, is still quite accurate for engineering 
practice. 

 
3.3. Disk-tool to generate a worm with 

circular generatrix in the cross plane 
 
In Fig. 5, is presented the crosing section of 

helical surface with constant pitch and circular 
generatrix. 

Consider that the following coordinates are 
known: 

- the  center  OC[XOC,YOC]; 
- coordinates of the circular arc ends, A [XA,YA] 

and D [XD,YD]. 
The analytical equations of the circular 

profile: 
 cos ;  sin .

C CO OX X R Y Y Rθ θ= + = −  (22) 
 

The Bezier substitution polynomials of 
second or third order are shown in table 3. Note 
that the Z coordinates of all defined points on 
the circular arc, may be considered constant 
Z=H, typically H=0. 

 
Fig.  5. Circular profile in frontal plane (disk-mill tool 

with helical teeth) 
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Table. 3. The 3rd order polynomial 

θ  Primary profile λ  
Approximate 
polynomial 
coefficient 
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In Fig. 6 and table 4, are presented the 

numerical coordinates of the axial profile of disk-tool, 
reciprocally enveloping with surfaces with circular 
frontal generatrix, determined by the two methods 
with the error outlined in the last column, where (see 
figure 7): 

 
75 ; 55 ; : [125;0.0];
0; 2 / 8; 280 ,

c

A D

p mm R mm O
a mmθ θ π

= =

= = =
 

 
(where a is the distance between piece origin and disk 
tool origin, see Fig. 1). 
 
 

Fig.  6 Axial profiles of disk-tool 

 
 
 

 
Table 4.  

Approximated 
profile 

Theoretical 
profile λ R 

[mm] 
H 
[mm] 

R 
[mm] 

H 
[mm] 

Error 
[mm] 

0.00 100.004 0.347 100.004 0.338 0.010 
0.10 100.303 3.227 100.316 3.237 0.016 
0.20 101.060 6.023 101.063 6.017 0.007 
0.33 102.668 9.522 102.658 9.513 0.013 
0.40 103.691 11.173 103.683 11.172 0.008 
0.50 105.426 13.493 105.422 13.495 0.004 
0.60 107.364 15.648 107.364 15.647 0.001 
0.66 108.733 16.985 108.726 16.972 0.015 
0.80 111.687 19.506 111.701 19.505 0.015 
0.90 114.013 21.236 114.018 21.228 0.009 
1.00 116.422 22.847 116.420 22.845 0.004 

 
Note: When the points are mesured on the 

helical surface’s generatrix, be A[XA, ZA]; B[XB, ZB]; 
C[XC, ZC]; D[XD, ZD] these points, we defined the λ 
parameter values by: 

 

 

;

,

B

C

AB

AB BC CD

AB BC

AB BC CD

λ

λ

=
+ +

+
=

+ +

 (23) 

 
where AB , BC , CD   are the AB, BC and CD  

strainght line segment modulus. 
 
4. SOFTWARE CONSIDERATIONS 
 
A software application developed in Java 

programming language was specially designed for 
this purpose. In Fig. 7, we present a screenshoot of the 
java applet, where we can define: 

- coordinates of an arbitrary number of points, 
mesured on generatrix curve (numerical values can be 
imported from CSV files); 

- outer diameter of the helical surface (D); 
- the tool type (disk tool) inour case). 
 
To estimate the error for the method proposed in 

this paper, and for comparative purpose, we can also 
use in our application a series of analytically defined 
generatrix curves (circle arc, straight line, involute 
and non-analytically profiles, defined by measured 
points). 

Also, the applet can represent planar projection 
of generatrix curve, axial tool profile (bottom-right 
corner), a 3D representation of the helical surfaces 
and normal vectors (top-left corner). 

Numerical results can be exported to comma 
separated values files. 
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Fig. 7. Applet screenshot (disk tool) 

5. CONCLUSIONS 
 
In this paper we have presented a novel method 

to approximate via Bezier polynomials of small order 
a cylindrical helical surface with constant pitch and 
in-plane generatrix known in discreet form by a 
reduced number of points (3 or 4).  

Specific algorithms were developed for the 
determination of the axial profile of the associated 
disk-tool, reciprocally enveloping with the helical 
surface, known in discreet form and expressed by 
Bezier replacing polynomials. 

Two examples illustrated the accuracy of the 
method. Besides the computational advantage (faster 
execution), the main appeal of the method is that the 
profile to be generated can be represented by the 
coordinates of a small number of points. These points 
can be eventually obtained from physical 
measurements on the generatrix. 

The presented algorithm is characterized by a 
satisfactory precision for typical industrial practice, 
especially for surfaces which are not associated with 
large load torque such as gears. 

The proposed algorithm is based on the 
Nikolaev theorem, but may be applied to other 

method known in the reciprocally enveloping surfaces 
studies. 

The proposed algorithm and also the software, 
are faster and easier to apply than traditional methods.  
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