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ABSTRACT 

 
Deformation process by using an oscillatory die is more convenient than 
conventional volumetric forming, because it requires, to obtain the same 
piece, a smaller manufacturing force (in the conditions of a floating 
contact surface) and allows higher deformation degrees, due to a slower 
cold hardening process. The paper suggests a calculus method to evaluate 
the forming force and the torque applied to oscillatory shaft. 
Keywords: orbital forming, floating contact surface. 

 
1. Working Principle 

 
During orbital volumetric forming (Figure 1), 
oscillatory die, 1, incrementally deforms 
worked piece 2. The deformation zone, 4, is 
mobile in space and time and runs over the 
whole worked piece frontal surface during an 
equipment functioning cycle. Superior die 
axis is inclined by θ angle, referred to the 
inferior die one. 

During manufacturing process, O point 
slides along inferior die axis. Superior die 
rolling onto piece’s surface is given by two 
rotation motions done around Z1 and Z2 axis. 
At a complete working cycle, piece’s height 
reduction is equal to “s” feed done by 
superior die along Z2 axis.  

From mechanical point of view, this 
ensemble part is acting as a rigid with a fix 
point. 

 
Fig. 1 – Oscillatory Die Forming Process Kinematics: 

1 – oscillatory die; 2 – manufactured piece; 3 – inferior die; 4 – floating contact surface. 
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2. Floating Contact Surface Curve 
Radius 

 
Under some restrictions, we may consider 
that orbital volumetric forming process can be 
compared to the rolling process. This analogy 
is easier to be accepted when forming annular 
pieces with a very big radius interior hole. 
The equation of oscillatory dies conical active 
surface (Figure 1) is 

                 .0
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During rolling process, roles radius is 
constant. When forming by an oscillatory die, 
curve radius has a variation from O center to 
the periphery and, as consequence, has an 
influence onto the forming force magnitude. 

Through a certain point A, (Figure 2), 
placed on the generating line of the cone from 
XOZ plain, another plain, ∆, having its 
normal parallel to this generating line, is 
considered.  

The equation defining ∆ plain is  
 

                 Xcosθ + Zsinθ = RA,         (2) 
 

where RA = OA denomination was made.

 
Fig. 2 – The Co-ordinates System Attached to the Oscillatory Die 
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By eliminating “X” between equations 
(1) and (2) and by considering tg4 θ ≈ 0 and 
cosθ ≈ 1 (θ being very small), it follows 
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Second and third order derivatives are:  
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Thus, contact surface between 
oscillatory die and piece curve radius 
equation will be 
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Worked piece’s superior surface may 
be considered a plain having the equation 
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where “s” means oscillatory die feed, [mm / 
osc.]. The solution of the equations system 
(2) and (7) is 
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If cosθ ≈ 1, it follows 
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From equation (6), when Y=0, it results 
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Because die conical surface is convex, 
only positives solutions of equation (9) are 
considered. After making the substitution  
X = RA, the expression 
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results, where 

                       
θ
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By substituting Y, from (11), into relation 
(6), curve radius corresponding to “B” point 
results: 
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It may be considered that arithmetic 
average of curve radii in points “A” and “B” 
gives AB arc curve radius  
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3. Forming Force and Torque 
Applied to Oscillatory Shaft 

 
To initiate the forming process, it is 

necessary that the active force reaches its 
critical value, calculated with relation  
                           Fo = kAcσo ,                         (15)                                                                                                                               
where: 

Ac means oscillatory die – worked piece 
contact area surface; 

k - factor whose value depends on forming 
speed magnitude, die geometrical complexity, 
friction ratio between oscillatory die and 
piece etc.;  

σ0 – material flowing limit. 
Contact surface can be found, under 

some approximations, in conformity to those 
presented in [4], chapter 3. In this sense, 
CDBE curve equation (Figure 3), conform to 
(9) relation, is 
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The equation of circle that delimitates 
worked piece’s frontal surface is  
                           222 RYX =+ .                    (17) 

Solving the system given by (16) and 
(17), leads to the following solutions: 
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Fig. 3 – Mark Projection on  

Worked Piece Frontal  
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The surface of mark projection can be 
calculated by using the relation 
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If a polar co-ordinates system by “O” 
origin is attached to the worked piece, by 
mathematical transformations, CDE curve 
equation will become  

            ( ) β−
=

β−θ
=ρ

cos1
RQ2

cos1tg2
s

 ,    (21) 

where ρ is the polar radius; 

θ
=

Rtg2
sQ  , vezi formula (12); 

β – the angle at the center 
corresponding to the mobile point on the 
circle having “O” as center and “R” radius. 

When ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

−=α
Rtg

s1arccos , the 

projection of contact surface between 
oscillatory die and worked piece can be 
calculated by using the formula  
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If relation (12) is used, equation (22) 
becomes 
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3. Calculation of Torque Applied to 

Oscillatory Shaft 
 

Conform to Figure 4, the expression to 
calculate the torque applied to oscillatory 
shaft is  
                      M = Fo·d ,                      (24) 
where: Fo is the orbital forming force, [daN]; 
             d – the brace of the force (the 

distance between resultant direction 
and shaft rotation axis). 

Dedicated literature, [2], shows that 
force’s direction during orbital forming is 
placed to the distance R/2 relative to worked 
piece axis and at the middle of the contact 
arc, respective γ/2 (Figure 4).  

From formula (21), it follows 

                      
ρ

−=β
RQ21cos .                     (25) 

The value of γ angle results from 
relation (25) if ρ = R/2  
                 γ = arccos (1-4Q).                    (26) 

Conform to (14), contact between 
oscillatory die surface and worked piece arc 

radius value is very big, compared to die 
feed. As consequence, it results 
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Thus, the expression of torque applied 
to oscillatory shaft has the form  

  
2
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Fig. 4 – Orbital Forming Force  
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Rezumat 

 
Procesul de deformare cu matriţă oscilantă este mai avantajos decât 
presarea volumică convenţională deoarece necesită, pentru obţinerea 
aceleiaşi piese, o forţă de prelucrare mai mică (în condiţiile unei suprafeţe 
de contact flotante) şi permite grade de deformare mai mari datorită unui 
proces de ecruisare mai lent. Lucrarea propune o metodă de calcul pentru 
forţa de deformare şi momentul de rotaţie aplicat arborelui oscilant.  
 

Résumé 
 

Le processus de déformation avec une matrice oscillante est plus 
avantageux que la déformation volumique conventionnelle parce que 
nécessite, pour obtenir la même pièce, une force d’usinage plus réduite 
(dans les conditions d’une surface de contact flottante) et permet degrés de 
déformation plus élevées, a la cause d’un écrouissage plus lente. Ce papier 
propose une méthode pour calculer la force de déformation et le moment de 
rotation appliqué au arbre oscillant. 
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