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ABSTRACT

This paper suggests a model, with general character, to study reciprocal

wrapped surfaces,

by wusing basic and complementary

theorems of

wrapping surfaces. By its particularizations, the model can be considered
as representing a multitude of known types of gears: worm gear, hypoid

gear.
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1. Introduction

There are known, accepted and applied basic
methods (Olivier, Gohman, Willis theorems), to
study gear’s teeth profiles. Complementary
methods, [3], are also applied: “Substituting
circles method”, “Minimum distance method”,
“Plane trajectories method”. Crossed axis gear
can be considered as a “general” type of worm
gear that transmits rotation motion between two
disjunctive axes.

This paper shows a model, with general
character, for the study of reciprocal
enwrapping surfaces, by wusing basic and
complementary theorems of wrapping surfaces.
By its particularizations, the model can be
considered as representing a multitude of
known types of gears: worm gear, hypoid gear,
parallel axis gear, conical gear etc.

2. Crossed Axis Gear. Reference Systems

In figure 1, there are two axes (A; and A) that
transmit the rotation motion, by keeping a constant
transmission ratio, are presented.

As a general form the studied gear is a hypoid
gear for which there are defined:

- xyz is the fixed reference system joined with
the plane worm wheel, with the z axis over posed to
A axis;

-XYZ- mobile reference system joined with
the plane worm wheel;

-XoYoZo- fixed reference system, joined with
the A, (Y)) axis of the hypoid worm;

-X,YZ;- mobile reference system, joined with
the worm.

The worm’s flank is considered known, which,
in general case, is thought as a conical one with its
axis different from the plane worm wheel’s axis
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Fig. I — Reference Systems; A; and A, Rotation
Motion Axis

3. The kinematics of the plane worm
wheel’s flank generation process

Related to the reference systems, shown in Fig.1,
there are defined:

-the absolute motion of the XYZ system, as a rotation
around A, axis, by the angular parameter ¢,

x=0) (9,) X ; (1)

-the worm’s rotation motion around A, (Y) axis, by
the angular parameter ¢,

X, =05 (9,) X )

-coordinates transformation between the xyz and
XoYoZo reference systems,

x, =B(x—4), 3)
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where:
1 0 0
B=|0 cosa,  sino, 4)
0 —-sina , cosa,

is the orthogonal transformation matrix between fix
systems (xyz and Xgy,Zo) unitary vectors;

A=|Ay )

is the matrix formed by O; origin co-ordinates
referred to fix system xyz.

NOTE The Ax, Ay, Az values together with o,
angle are considered as constants, having specific
values for each analyzed case.

The absolute motions, (1) and (2), allow
finding relative motions — motions between the
mobile reference systems.

Thus, from (3), the relative motion results,

T T
X :(’33(@1)[[3 "0, ((Pz)'X1 +A]’ ()
representing current point of the space associated to
the generalized worm (X;YZ; system) referred to the
plane worm wheel (XYZ system).
Also, from (6), inverse motion, defined as
XYZ space motion toward the X,Y,Z; system, can be
determined,
T T
X, =0, ((p,)[[?) -, ((pz).X] —A]. (7
If in transformation (6) the X; matrix means a
matrix whose elements represent the worm’s flank,
then, after developing, the obtained parametrical
equations will have the signification of the surfaces
family generated by the worm’s flank, toward the

plane worm wheel’s system.
Obviously, transmission ratio,

=22, ®)
?;

is considered as constant.

4. The Main Equations of the Worm’s
Flank

In the reference system X;Y,Z,, see figure 1, system
over posed, initially, with the fixed reference system
X0YoZo, (Yo — worm axis), is defined the worm’s axial
section is defined (as it can be seen in Fig. 2). Worm

is presumed to be a conical one, with j as axis and

having the helical parameter p, constant).
The current point radius can be defined as

By =T +0,-0, ©)

a; means conical spiral parameter and 0 — the variable
angular parameter.
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Fig. 2. Worm’s axial section
Thus, in the xgyoz, reference system, for the
worm’s axial section is accepted as:
x,=0;
Sy.=v.(t)+k; (10)
z,=2z, (t)+rbo,

with t independent variable.
In the next motion, the worm’s axial profile
generates the worm’s helical profile

X,
Y ||=; (0)x, + poj . (11
Z,
in which the next definition is obvious
0
x, =y, ()] (12)

z,(1)

From (11) and (12), after replacement, it results

X, cos® 0 sin® 0 0
Y= 0 I 0 |y, (2)+k|+|p6|.
Z,/|| |-sin® 0 cosO| |z, (t)+rbe 0

(13)

It is developed as:
X, = [za (¢)+n, :ISil’l 0,

(2)|Y, =]y, (£)+k]- pb; (14)
Z, :[za (t)+ercos9,

representing a conical right worm, with t and 0
parameters.

5. The Worm Wheel’s Flank. The Family
of Surface Generated by the Conical
Worm in the Wheel’s Reference System

From (6) and (14), after replacing the matrix
previously defined, the following form results
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X cosp, sing, 0 i J Kk
Y(=|-sing, coso, 0| Ny, =X,y Yy Zyl: (20)

! ! ’

Z 0 0 ] X]t )]It Z]t
1 0 0 -R, is the matrix associated to the vector having the
0 cos a, - Sin o, (15)  same direction with the speed into the relative motion
0 . of the current point belonging to the worm wheel’s

L sima,, - cosa, system toward the worm space,

1 X
cosg, 0 sing,| (IX,|| [Ax R, :j I @1)
0 1 0 ||r]+|a]| | ®,
. 0 7 Az From (6), it results
—singQ, cos @, | . do )
In principle, below equations, (16), is R<|>1 =, ((PZ) d - p [(D3 ((PI )X - A] +
representing family of worm flanks toward the plane ¢
wheel’s system, dA
T, ((PZ)B o; ((PI)X_d_
X:A(te(pz)cosq),JrB(tOq)z)sincp,; @ o

(2),, -

Y= —A(l 0,9, )ll’l(PI + B(f 0,0, )COS @, or after the replacement of the X matrix with the (6)

1

7=C ( £ 0 0, ) form and taking into account the (8) form results
(16) R, =5(0,) 2B {0} (0,04 (0,)
In the equations of family (16), the functions d 0,
A(t,0,02), B(t,0,9,), C(t,0,0,) have the following
expresszions: ’ v v -[B%oﬁ (([)2 ) X+ A} — A} +
. (23)
A(1,6,0,) = X, (1,6) cos (ig, ) + +0,(0,)B{o; (9,); (9,)-
,(16)sin(ip,) - Av 6] (02) X+A}_5_A}.
B(t,e,(pz)=X1(t,9)sin(i(p1)sinocy+ @,
] ] After development, it results the form
+Y,(2,0)cosa, —Zl(t,e)cos(l(pj)sm(xy +Ay; R, =MX,+N 24)
C(1,0,9,)=—X,(,0)sin(ip,)cosa, + where:
) T
+Y](t,9)sin0cy+Zj(t,9)cos(i(p])cosocy+Az. M =io, (0,)0; (¢,)+ (25)
(17) +0, (0,)B0; (9,)0; (9,)B ) (0,)
In principle, the family is represented by equations: and
X=X(1.0,9,) N =,(0)Bd; (¢,)o;(9,)4. 6
(Z)wz Y=Y (l‘ ,0,0, ),‘ (18)  After replacements and developments, it is obtained:
Z=Z(t,9,(p,). 0 —cos@,cosa, —(i—sin(xy)
M =|cos ¢, cosa., 0 sin@,cosa ||,
6. The Enwrapping Condition (i—sin Oty) —sin@, cosa, 0
The enwrapping condition, associated to the 27)
surfaces family(Z)(p , (18), according to the —Axsin@, sina., — Ay cos @,
Gohman'’s theorem, has the form N = —Axcosa y - (28)
NE.R% =0, (19) Axcos @, sino, —Ay sin@,
where: Thus, the R'q)] vector is:

- Ny is the normal to the conical worm flanks surface
(14),
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R ={—Y1 (t,@)coscpz coso, —

7
-Z, (t,e)[i—sinocy]—Axsin o, Sin@,—
—AyCOS(pz}-f+{X,(t,@)coscpz cosa, + (29)
+Z,(1,8)sin¢, cosa., —Axcoscxy}-j+

Jr{X,(t,e)[i—sinocy]—YI(I,G)sin(p2 cosa.,

+Axsino,, cos ¢, —Ay sin (pz} -k
From (19), (20), (29), in principle, a function

with following form is determinate
q(1.6,0,)=0, (30)

or, by eliminating one of the variable parameters, the
condition becomes

1=1(0,9,). 31)
The enwrapping surface (the plane wheel’s
tooth flank) can be expressed through the equations

X=X(0.9,);
(S):|Y=Y(6,9,); (32)
Z=7(6,9,).

Obviously, the representation of the surface S
can be done by plane sections, normal on the wheel’s
axis,

Z (9, (P1) = H , (H random variable). (33)

NOTE For the particularly (single) cases,
complementary methods for the enwrapping surfaces
can be easy applied.

Z
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Fig. 3. Hypoid cylindrical worm’s axial section

According to the (10) relations and figure 3,
the cylindrical worm’s axial section is defined:

-for the left flank,
x,=0;
S, |y, =tsiny; (34)

z,=—tcosy,

-and, similarly, for the right flank,
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x,=0;
S, \y, =k,—t,siny,; (35)
z, =—t,cosVy,.

Based on (13) equations, the helical flanks are
determined by the following equation considering the
(35) relation:

- the left flank,

X, =[-tcosy-r, |sin6;

z, Y, =tsiny — pb; (36)

o
Z, =[—tcosx|/—rrm]cos 0,
-the right flank,
X, =[~t,cosy,—r,,|sin6;
2, Y, =t siny, +k,— p0; (37)
Z, z[—t1 cosy, —rrm]cose,
mn

with &k, =—— wheel’s module and p-helical

2

parameter.

7. Modeling Algorithm for the Helical
Teeth Wheel’s Flank

For this certain case, it may simplify the algorithm by
considering the cylindrical worm’s rotation motion is
equal to the translation motion.

In this way, for the reference systems
equivalent to those defined in figure 1, the absolute
motions are:

x=0;(9,)X, (38)
meaning the wheel rotation;
—Ax
x=X,+a; a=|Ay=po,l, (39
r

rm
representing the cylindrical worm’s translation.
The relative motion between the mobile
reference systems is

X =0,(¢,)[X,+4] (40)
also the inverse motion

X, =0 (¢,)X—a (41)
NOTE The motion described by the (40)

transformation comes from (6) relation for@, = 0,

B=1 and A =a, see(39).
From (40), is determined the worm’s surface family
in the wheel’s reference system,

X cosp, sing, 0| |X, —Ax
Y|=|-sing, cose, O|||Y,|+|Ay - po, .(42)
VA 0 0 11 Z, r,

So, after the equation’s development, results
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X:[XI—Ax]cos(pl—[YI —Ay—p(pz]sin(pl; 43)

(Z)w, N Y:[X,—Ax]sin(p,+[Y,—Ay—p(p2]cos(p,;

Z=7Z +r,.

The enwrapping condition presumes knowing
the 2 surface’s normal, which from (36) is

calculated as

k (44)

—|—tcosy—r, |sin0|,
b

,- j
]\72" =[~tcosy-r,]cos® p
n

—cos\y sin6 siny —cos\y cos O

which permits establishing the parameters:
Ny = —pcoswcos9+[—tcosw—rb]sinﬁsin\p;
N, =[-tcosy—r,]cosy; (45)
N, = pcoswsin6+[—tcosw —rb]cosﬁsin\y.

Similar, is defined the right flank’s parameters
of the normal:
Ny =-pcosy, cosO+[—t, cosy, —r, | sin®siny,;

N, = [—t, cos vy, —rb]coslyl;

la

(46)

N, = pcosy, sin®+[~t, cosy, —r, |cos O siny,.
'dr

The “speed” vector in relative motion of the
plane wheel’s system toward the cylindrical worm’s
system is defined as

_dX,
do,

From (41) transformation is defined
R, = a; (¢,)o;(9,)[X, +a]—a 48)

which, after replacing and partial developments, are

R

o) 47

0 -1 0| Xx,-Ax 0 J
R, =1 0 o||Y,+av—po,|+|p ‘(EZ-(49)
0 0 o z+r o '
Finally, is expressed as
—Y, - Ay + po,
do
R, = X]—Az+pd—(P2 . (50)
1
0

The equations (44), (45), (50), taken into
account the worm’s flank definition (36) or (37),
based on the general Gohman’s theorem

N,-R, =0 (51)

determinate the enwrapping condition

1

d
[_Y1_Ay+p(Pz]NX, +|:x1_AZ+pd_$z:|NY1 =0 (32

In the (52) relation, N X1’NY1 are the

parameters of the normal to both helical surfaces of
the flanks.

Finally, the enwrapping condition has a form
similar with (30) relation.
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The enwrapped surface (S-wheel teeth’s flank)
is expressed in XYZ system through (43) equation
together with the (52) condition.

For more simple graphical representation the
plane wheel’s flank line are defined in plane sections,

Z =H (H—arbritrarvariable) .(53)
In this case, from (43) and (36), results
[~tcosy—r, |cos®+r, =H, (H-variable).(54)

7. Applications

In figure 4, hypoid worm’s profiles are represented in
normal plane on the wheel’s axis.

In tables 1 and 2, there are shown the co-
ordinates of the hypoid worm’s profiles, in Z=H
planes, for: R.=20.46 mm; Ri=15.45 mm; p=1.25
mm.

Table 1. Hypoid worm profile —right flank
H X, Y,
[mm [mm] [mm]
-15.46000 | 13.40149 236274
-15.46000 | 6.79665 3.69433
-15.46000 | 336305 4.22995
-15.46000 | 177317 4.42463
-15.46000 | 0.21947 4.57636
-15.46000 | 697927 | 4.74830
-15.46000 11025766 | 4.49832
-15.46000 | 15 65104 424222
-17.96000 | ¢ 80051
-17.96000 2.63108
7.58330
-17.96000 363178 3.01442
-17.96000 ’ 3.57824
-17.96000 | -0-00854 3.92559
-17.96000 | -1-.81063 4.02621
-17.96000 | 449555 2.97857
-19.96000 3.25251 3.11697
-19.96000 | -0.96819 3.44369
-19.96000 | -2.78163 3.51081
-19.96000 | -4.01428 3.53044

Table 2. Hypoid worm profile —left flank

H X Y,

[mm] [mm] [mm]
-19.96000 | 4.49555 1.16558
-19.96000 | 3.45775 1.11111
-19.96000 | 2.43778 1.08766
-19.96000 | 1.43021 1.09411
-19.96000 | 0.42984 1.12975
-19.96000 | -1.56945 1.28763
-19.96000 | -2.57843 1.41027
-17.96000 | -3.60054 1.56296
-17.96000 | 9.80051 0.81809
-17.96000 | 5.54633 0.10848
-17.96000 | 1.79339 -0.07287
-17.96000 | -1.81063 0.17812
-15.46000 | -5.56503 0.86167
-15.46000 | 13.40149 0.54975
-15.46000 | 8.73303 -0.76042
-15.46000 | 5.02387 -1.37606
-15.46000 | 1.77317 -1.52675
-15.46000 | -4.54292 -0.70808
-15.46000 | -8.16306 0.33189
-15.46000 | -12.65104 2.02077
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Fig. 4. In-plane sections of the hypoid worm

NOTE The hypoid worm’s profiles, in Z=H planes,
were drew for the wvariation limits of t and t
parameter, see equation (36) and (37):

-for the left flank,

h—r, cos©
t=—=>t—

; (55)
cos O cos
-for the right flank,
h—r, cos©
= (56)

]_ .
cosOcos vy,

Fig. 5. The hypoid wheel flank’s surfaces

For the worm’s profiles presented (see figure 4
and tables 1 and 2) based on the established algorithm
in the 7.1 paragraph, were determined:

-the hypoid wheel’s flanks (see Fig. 2)

-the characteristic curves, equation (43),
condition (52) and f;=constant;

-the profiles lines of the hypoid wheel in
normal planes on the wheel (equation (43), (52) and
(54)).

In table 3, are presented the profiles lines’ co-
ordinates and the characteristic curves’ coordinates.

FASCICLE V
Table 3.
The profiles lines
Right flank

X Y Z

[mm] [mm] [mm]

-35.2079 64.1251 -3.0224-

-35.4703 64.4510 2.0454

-35.4567 64.4559 -1.9968

-35.7222 64.7820 -1.0197

-45.6492 68.1977 0.0367

-35.2955 65.0351 1.0350

-34.6282 64.9439 2.0152

-33.9386 64.8478 3.0445

Left flank

-35.2079 66.4889 -3.0239

-35.4703 66.0123 -2.0293

-35.4567 65.9671 -1.9514

-35.7222 65.5145 -1.0085

-45.6492 64.9900 0.0471

-35.2955 64.3133 1.0425

-34.6282 63.6398 2.0208

-33.9386 62.9532 3.0080
Table 4.

The left characteristic curves

¢, =0 Py =7

-53.7984 | 63.2809| 3.7282 -49.8094 | 62.829 3.7272
-53.8059 | 63.3317| 3.6415 -49.8104 | 62.834 3.7185
-49.8071 62.839 3.7099
-53.9848 | 64.6522| 1.3799
-53.9865 | 64.6523| 1.3799 -49.8697 | 63.655 2.3238
-53.9882 | 64.6575| 1.3712 -49.8678 | 63.660 2.3152
-54.2859 | 67.2601 | -3.1042 -50.0324 | 66.819 | -3.0854
-54.2881 67.2602 | -3.1042 -50.0344 | 66.825 | -3.0940
-54.2860 | 67.2651| -3.1129 -50.0342 | 66.830 | -3.1027

In figure 6, there is a 3d view of the hypoid
wheel’s teeth.

Fig.6. The hypoid wheel’s teeth

8. Conclusions

The  suggested model allows, by
particularizing, studying a wide range of crossed axis
gears. The model, developed on the base of both
enveloped surfaces general theory and
complementary theorems, has the capability to
rigorously describe teeth flanks profiles for gearing
elements.
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Algoritm pentru studiul angrenajului spiroidal

Rezumat

In lucrare, se propune un model, cu caracter de generalitate, pentru studiul
suprafetelor reciproc infasuratoare, utilizdnd teoremele fundamentale si
complementare ale teoriei infasurarii suprafetelor. Prin particularizari, modelul
poate fi privit ca reprezentand o multitudine de tipuri de angrenaje cunoscute:
angrenajul melcat, angrenajul spiroidal, angrenajul cu axe paralele, angrenajul conic
etc. Se prezinta o solutie privind angrenajul spiroidal cilindric.

Algorithme pour 1'etude de I’engrenage spiroidal

Résumé

Dans ce papier on presente un modele, avec le caractére général, étudier des
surfaces enveloppe, en utilisant des théorémes fondamentaux et complémentaires
d'envelopper des surfaces. Le modéle peut étre considéré comme le fait de
représenter une multitude de types connus d’engrenages. On présente 1’engrenage

spiroidal.
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