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ABSTRACT 
 

This paper suggests a model, with general character, to study reciprocal 
wrapped surfaces, by using basic and complementary theorems of 
wrapping surfaces. By its particularizations, the model can be considered 
as representing a multitude of known types of gears: worm gear, hypoid 
gear. 
Keywords: wrapping surfaces, crossed axis gears. 

  
1. Introduction 

 
There are known, accepted and applied basic 
methods (Olivier, Gohman, Willis theorems), to 
study gear’s teeth profiles. Complementary 
methods, [3], are also applied: “Substituting 
circles method”, “Minimum distance method”, 
“Plane trajectories method”. Crossed axis gear 
can be considered as a “general” type of worm 
gear that transmits rotation motion between two 
disjunctive axes. 

This paper shows a model, with general 
character, for the study of reciprocal 
enwrapping surfaces, by using basic and 
complementary theorems of wrapping surfaces. 
By its particularizations, the model can be 
considered as representing a multitude of 
known types of gears: worm gear, hypoid gear, 
parallel axis gear, conical gear etc. 
 
2. Crossed Axis Gear. Reference Systems 

 
In figure 1, there are two axes (Δ1 and Δ2) that 
transmit the rotation motion, by keeping a constant 
transmission ratio, are presented. 

As a general form the studied gear is a hypoid 
gear for which there are defined: 

- xyz is the fixed reference system joined with 
the plane worm wheel, with the z axis over posed to 
Δ1 axis; 

-XYZ- mobile reference system joined with 
the plane worm wheel; 

-x0y0z0- fixed reference system, joined with 
the Δ2 (Y1) axis of the hypoid worm; 

-X1Y1Z1- mobile reference system, joined with 
the worm. 

The worm’s flank is considered known, which, 
in general case, is thought as a conical one with its 
axis different from the plane worm wheel’s axis 

 

Hypoid
wheel’s axis

Hypoid 
worm’s axis 

Front plane of 
hypoid wheel 

 
Fig. 1 – Reference Systems; Δ1 and Δ2 Rotation 

Motion Axis 
 

3. The kinematics of the plane worm 
wheel’s flank generation process 

 
Related to the reference systems, shown in Fig.1, 
there are defined: 
-the absolute motion of the XYZ system, as a rotation 
around Δ1 axis, by the angular parameter φ1, 
 ( )T

3 1x X= ω ϕ ⋅ ; (1) 
-the worm’s rotation motion around Δ2 (Y1) axis, by 
the angular parameter φ1, 
 ( )T

0 3 1 1x X= ω ϕ ⋅ ; (2) 
-coordinates transformation between the xyz and 
x0y0z0 reference systems, 
 ( )0x x A= β − , (3) 
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where: 

 y

y y

1 0 0
0 cos sin
0 sin cos

yβ = α
− α α

α  (4) 

is the orthogonal transformation matrix between fix 
systems (xyz and x0y0z0) unitary vectors; 

 

x
A y

z

Δ
= Δ
Δ

 (5) 

is the matrix formed by O1 origin co-ordinates 
referred to fix system xyz. 

NOTE The Δx, Δy, Δz values together with αy 
angle are considered as constants, having specific 
values for each analyzed case. 
 The absolute motions, (1) and (2), allow 
finding relative motions – motions between the 
mobile reference systems. 

Thus, from (3), the relative motion results,  
 ( ) ( )T T

3 1 2 2 1X X A⎡ ⎤= ω ϕ β ⋅ω ϕ ⋅ +⎣ ⎦ , (6) 

representing current point of the space associated to 
the generalized worm (X1Y1Z1 system) referred to the 
plane worm wheel (XYZ system). 

Also, from (6), inverse motion, defined as 
XYZ space motion toward the X1Y1Z1 system, can be 
determined, 
 ( ) ( )T T

1 3 1 2 2 1X X A⎡ ⎤= ω ϕ β ⋅ω ϕ ⋅ −⎣ ⎦ . (7) 

If in transformation (6) the X1 matrix means a 
matrix whose elements represent the worm’s flank, 
then, after developing, the obtained parametrical 
equations will have the signification of the surfaces 
family generated by the worm’s flank, toward the 
plane worm wheel’s system. 

Obviously, transmission ratio, 

 2

1

i ϕ
=
ϕ

, (8) 

is considered as constant. 
 

4. The Main Equations of the Worm’s 
Flank 

 
In the reference system X1Y1Z1, see figure 1, system 
over posed, initially, with the fixed reference system 
x0y0z0, (y0 – worm axis), is defined the worm’s axial 
section is defined (as it can be seen in Fig. 2). Worm 
is presumed to be a conical one, with j

r
 as axis and 

having the helical parameter p, constant). 
The current point radius can be defined as 

 , (9) b rm 1r r a
θ
= + ⋅θ

a1 means conical spiral parameter and θ – the variable 
angular parameter. 
 

 
Fig. 2. Worm’s axial section 

 
Thus, in the x0y0z0 reference system, for the 

worm’s axial section is accepted as: 

 ( )
( )

a

A a a

a a b

x 0;
S y y t k;

z z t r
θ

=

,
= +
= +

 (10) 

with t independent variable. 
In the next motion, the worm’s axial profile 

generates the worm’s helical profile 

 ( )
1

T
1 2 a

1

X
Y x
Z

p j= ω θ + θ
r

, (11) 

in which the next definition is obvious 

 ( )
( )

a a

a

0
x y t

z t
= . (12) 

From (11) and (12), after replacement, it results 

( )
( )

1

1 a

1 a b

X cos 0 sin 0 0
Y 0 1 0 y t k p .

sin 0 cos z t r 0
θ

θ θ
= ⋅ + + θ
− θ θ +

 

 (13) 

Z

It is developed as: 

 ( )
( )
( )
( )

1 a b

1 a

1 a b

X z t r sin ;

Y y t k p ;

Z z t r cos ,

θ

θ

⎡ ⎤= + θ⎣ ⎦
Σ = + ⋅ θ⎡ ⎤⎣ ⎦

⎡ ⎤= + θ⎣ ⎦

 (14) 

representing a conical right worm, with t and θ 
parameters. 
 
5. The Worm Wheel’s Flank. The Family 

of Surface Generated by the Conical 
Worm in the Wheel’s Reference System 

 
From (6) and (14), after replacing the matrix 
previously defined, the following form results 
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1 1

1 1

y y

y y

2 2 1

1

2 2 1

X cos sin 0
Y sin cos 0
Z 0 0 1

1 0 0
0 cos sin
0 sin cos

cos 0 sin X x
0 1 0 Y y

sin 0 cos Z z

ϕ ϕ
= − ϕ ϕ ⋅

⎡
⎢

α − α ⋅⎢
⎢ α α⎣

ϕ ϕ
.

Δ ⎤
⎥⋅ ⋅ + Δ ⎥
⎥− ϕ ϕ Δ ⎦

 (15) 

In principle, below equations, (16), is 
representing family of worm flanks toward the plane 
wheel’s system, 

 

( )
( ) ( )
( ) ( )
( )

1

2 1 2

2 1 2 1

2

1X A t , , cos B t , , sin ;
: Y A t, , in B t , , cos ;

Z C t, , .
ϕ

= θ ϕ ϕ + θ ϕ ϕ
Σ = − θ ϕ ϕ + θ ϕ ϕ

= θ ϕ
 (16) 

In the equations of family (16), the functions 
A(t,θ,φ2), B(t,θ,φ2), C(t,θ,φ2) have the following 
expressions: 

 

 (17) 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 1 1

1 1

2 1 1 y

1 y 1 1 y

2 1 1 y

1 y 1 1 y

A t , , X t , cos i

Z t , sin i x;

B t , , X t , sin i sin

Y t , cos Z t , cos i sin y;

C t, , X t , sin i cos

Y t , sin Z t , cos i cos z.

θ ϕ = θ ϕ +

θ ϕ −Δ

θ ϕ = θ ϕ α +

+ θ α − θ ϕ α + Δ

θ ϕ = − θ ϕ α +

+ θ α + θ ϕ α + Δ

In principle, the family is represented by equations: 

 ( )
( )
( )
( )

1

1

1

1

X X t , , ;
Y Y t , , ;
Z Z t , , .

ϕ

= θ ϕ
Σ = θ ϕ

= θ ϕ
 (18) 

 
6. The Enwrapping Condition 

 
The enwrapping condition, associated to the 

surfaces family , (18), according to the 

Gohman’s theorem, has the form 

( )
1ϕ

Σ

 , (19) 
1

N R 0Σ ϕ⋅ =
r r

where: 
-  is the normal to the conical worm flanks surface 
(14), 
NΣ

ur

 1 1 1

1t 1t 1t

i j k
N X Y Z

X Y Z
Σ θ θ θ′ ′ ′=

′ ′ ′

rr r

r
; (20) 

-
1

Rϕ is the matrix associated to the vector having the 
same direction with the speed into the relative motion 
of the current point belonging to the worm wheel’s 
system toward the worm space, 

 
1

1

1

dXR
dϕ =
ϕ

. (21) 

From (6), it results 

 

( ) ( )

( ) ( )

1

T2
2 2 3 1

1

T
2 2 3 1

1

dR X A
d

dAX
d

ϕ

ϕ ⎡ ⎤= ω ϕ β ω ϕ − +⎣ ⎦ϕ

⎡ ⎤
+ω ϕ β ω ϕ −⎢ ⎥ϕ⎣ ⎦

&

&

 

  (22) 
or after the replacement of the X matrix with the (6) 
form and taking into account the (8) form results 

 

( ) ( ) ( ){

( ) }
( ) ( ) ( ){

( )

1

T2
2 2 3 1 3 1

1

T T
2 2

T
2 2 3 1 3 1

T T
2 2

1

dR
d

X A A

dAX A .
d

ϕ

ϕ
= ω ϕ β ω ϕ ω ϕ ⋅

ϕ

⎡ ⎤⋅ β ω ϕ + − +⎣ ⎦

+ω ϕ β ω ϕ ω ϕ ⋅

⎫
⎡ ⎤⋅ β ω ϕ + − ⎬⎣ ⎦ ϕ ⎭

&

&
 (23) 

After development, it results the form 
 

1 1R MX Nϕ = +  (24) 
where: 

 
( ) ( )

( ) ( ) ( ) ( )

T
2 2 2 2

T T
2 2 3 1 3 1 2 2

M i= ω ϕ ω ϕ +
T+ω ϕ βω ϕ ω ϕ β ω ϕ

&

&
 (25) 

and 
 ( ) ( ) ( )T

2 3 1 3 1N A= ω ϕ βω ϕ ω ϕ& . (26) 
After replacements and developments, it is obtained: 

( )

( )

2 y y

2 y 2 y

y 2 y

0 cos cos i sin

M cos cos 0 sin cos ;

i sin sin cos 0

− ϕ α − − α

= ϕ α ϕ α

− α − ϕ α

 (27) 

 
2 y

y

2 y 2

x sin sin y cos
N x cos

x cos sin y sin

2−Δ ϕ α −Δ ϕ
= −Δ α

Δ ϕ α −Δ ϕ
. (28) 

Thus, the 
1

Rϕ

r
vector is: 
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( ){
( )

} ( ){
( ) }
( ){ ( )

}

1 1 2 y

1 y y 2

2 1 2 y

1 2 y y

1 y 1 2

y 2 2

R Y t , cos cos

Z t , i sin x sin sin

y cos i X t , cos cos

Z t , sin cos x cos j

yX t , i sin Y t , sin cos

x sin cos y sin k

ϕ = − θ ϕ α −

⎡ ⎤− θ − α −Δ α ϕ −⎣ ⎦

−Δ ϕ ⋅ + θ ϕ α +

+ θ ϕ α −Δ α ⋅ +

⎡ ⎤+ θ − α − θ ϕ⎣ ⎦

+Δ α ϕ −Δ ϕ ⋅

r

r

r

r
α

 (29) 

From (19), (20), (29), in principle, a function 
with following form is determinate 
 , (30) ( )1q t , , 0θ ϕ =
or, by eliminating one of the variable parameters, the 
condition becomes 
 ( )1t t ,= θ ϕ . (31)

The enwrapping surface (the plane wheel’s 
tooth flank) can be expressed through the equations 

 ( )
( )
( )
( )

1

1

1

X X ,

S : Y Y , ;

;

Z Z , .

= θ ϕ

= θ ϕ

= θ ϕ

 (32)

Obviously, the representation of the surface S 
can be done by plane sections, normal on the wheel’s 
axis, 

 ( )1Z ,θ ϕ = H , (H random variable). (33) 
NOTE For the particularly (single) cases, 

complementary methods for the enwrapping surfaces 
can be easy applied. 

 
Fig. 3. Hypoid cylindrical worm’s axial section 
 

According to the (10) relations and figure 3, 
the cylindrical worm’s axial section is defined: 

-for the left flank, 

 
a

A a

a

x 0;
S : y t sin ;

z t cos

=

;
= ψ
= − ψ

 (34)

-and, similarly, for the right flank, 

 
a

A a 0 1 1

a 1 1

x 0;
S : y k t sin ;

z t cos .

=
= − ψ
= − ψ

 (35)

Based on (13) equations, the helical flanks are 
determined by the following equation considering the 
(35) relation: 

- the left flank, 

 

[ ]

[ ]

1 rm

st 1

1 rm

X t cos r sin ;
: Y t sin p ;

Z t cos r cos ;

= − ψ − θ
Σ = ψ − θ

= − ψ − θ
 (36)

-the right flank, 

 

[ ]

[ ]

1 1 1 rm

dr 1 1 1 0

1 1 1 rm

X t cos r sin ;
: Y t sin k p ;

Z t cos r cos ,

= − ψ −
Σ = ψ + − θ

θ

= − ψ − θ
 (37)

with 0
mk
2
π

=  wheel’s module and p-helical 

parameter. 
 

7. Modeling Algorithm for the Helical 
Teeth Wheel’s Flank 

 
For this certain case, it may simplify the algorithm by 
considering the cylindrical worm’s rotation motion is 
equal to the translation motion. 

In this way, for the reference systems 
equivalent to those defined in figure 1, the absolute 
motions are: 
 ( )T

3 1x X= ω ϕ , (38) 
meaning the wheel rotation; 

 1 2

rm

x
x X a; a y p

r

−Δ
= + = Δ − ϕ , (39) 

representing the cylindrical worm’s translation. 
The relative motion between the mobile 

reference systems is 
 ( )[ ]3 1 1X X a= ω ϕ +  (40) 
also the inverse motion 
 ( )T

1 3 1X X a= ω ϕ −  (41) 
NOTE The motion described by the (40) 
transformation comes from (6) relation for , 2 0ϕ =

*Iβ =  and A a= , see(39). 
From (40), is determined the worm’s surface family 
in the wheel’s reference system, 

1 1 1

1 1 1 2

1 b

X cos sin 0 X x
Y sin cos 0 Y y p .

ϕ ϕ ⎡ −Δ ⎤
⎢ ⎥= − ϕ ϕ + Δ − ϕ

Z 0 0 1 Z r
⎢ ⎥
⎢ ⎥⎦

 (42) 

⎣
So, after the equation’s development, results 
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( )
[ ] [ ]
[ ] [ ]

1

1 1 1 2

1 1 1 2

1 b

1

1

X X x cos Y y p sin
: Y X x sin Y y p cos ;

Z Z r .
ϕ

= −Δ ϕ − −Δ − ϕ ϕ
Σ = −Δ ϕ + −Δ − ϕ ϕ

= +

;  (43) 

The enwrapping condition presumes knowing 
the  surface’s normal, which from (36) is 
calculated as 

Σ

[ ] [ ]
st b b

i j k
N t cos r cos p t cos r sin ,

cos sin sin cos cos
Σ = − ψ − θ − − ψ − θ

− ψ θ ψ − ψ θ

rr r

r  (44) 

which permits establishing the parameters: 
[ ]

[ ]
[ ]

1st

1st

1st

X

Y b

Z b

N p cos cos t cos r sin sin

N t cos r cos ;

N p cos sin t cos r cos sin .

= − ψ θ+ − ψ − θ ψ

= − ψ − ψ

= ψ θ+ − ψ − θ ψ

b ;
 (45) 

Similar, is defined the right flank’s parameters 
of the normal: 

[ ]
[ ]

[ ]

1dr

1dr

1dr

X 1 1 1 b

Y 1 1 b 1

Z 1 1 1 b

N p cos cos t cos r sin sin ;

N t cos r cos ;

N p cos sin t cos r cos sin .

= − ψ θ+ − ψ − θ ψ

= − ψ − ψ

= ψ θ+ − ψ − θ ψ

1

1

 (46) 

The “speed” vector in relative motion of the 
plane wheel’s system toward the cylindrical worm’s 
system is defined as 

 
1

1

1

dXR
dϕ =
ϕ

 (47) 

From (41) transformation is defined 
 ( ) ( )[ ]

1

T
3 1 3 1 1R X aϕ = ω ϕ ω ϕ + −& &a  (48) 

which, after replacing and partial developments, are 

1

1
2

1 2
1

1 b

0 1 0 X x 0
dR 1 0 0 Y y p p
d

0 0 0 Z r 0
ϕ

− − Δ
ϕ

= + Δ − ϕ +
ϕ

+

. (49) 

Finally, is expressed as 

 
1

1 2

2
1

1

Y y p
dR X z p
d

0

ϕ

− − Δ + ϕ
ϕ

= −Δ +
ϕ

. (50) 

The equations (44), (45), (50), taken into 
account the worm’s flank definition (36) or (37), 
based on the general Gohman’s theorem 

  (51) 
1

N R 0Σ ϕ⋅ =
r r

determinate the enwrapping condition 

[ ]
1 1

2
1 2 X 1 Y

1

dY y p N x z p N
d

⎡ ⎤ϕ
− −Δ + ϕ + −Δ + =⎢ ⎥ϕ⎣ ⎦

0  (52) 

In the (52) relation,  are the                     
parameters of the normal to both helical surfaces of 
the flanks. 

1 1X YN ,N

Finally, the enwrapping condition has a form 
similar with (30) relation. 

The enwrapped surface (S-wheel teeth’s flank) 
is expressed in XYZ system through (43) equation 
together with the (52) condition. 

For more simple graphical representation the 
plane wheel’s flank line are defined in plane sections, 
 Z H ( H arbritrar var iable )= − . (53) 
In this case, from (43) and (36), results 

[ ]rm bt cos r cos r H , ( H var iable )− ψ − θ+ = − .(54) 
 

7. Applications 
 
In figure 4, hypoid worm’s profiles are represented in 
normal plane on the wheel’s axis. 

In tables 1 and 2, there are shown the co-
ordinates of the hypoid worm’s profiles, in Z=H 
planes, for: Re=20.46 mm; Ri=15.45 mm; p=1.25 
mm. 

 
Table 1. Hypoid worm profile –right flank 

H 
[mm 

X1 

[mm] 
Y1 

[mm] 
-15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
-17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
-19.96000 
 -19.96000 
 -19.96000 
-19.96000 

13.40149 
6.79665 
3.36305 
1.77317 
0.21947 

- 6.27922 
-10.25766 
-12.65104 
9.80051 
7.58330 
3.63178 

-0.00854 
-1.81063 
4.49555 
3.25251 

-0.96819 
-2.78163 
-4.01428 

2.36274 
3.69433 
4.22995 
4.42463 
4.57636 
4.74830 
4.49832 
4.24222 
2.63108 
3.01442 
3.57824 
3.92559 
4.02621 
2.97857 
3.11697 
3.44369 
3.51081 
3.53044 

 
 

Table 2. Hypoid worm profile –left flank 
H 

[mm] 
X1 

[mm] 

Y1 
[mm] 

-19.96000 
 -19.96000 
 -19.96000 
 -19.96000 
 -19.96000 
 -19.96000 
 -19.96000 
-17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
 -17.96000 
-15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 
 -15.46000 

4.49555 
3.45775 
2.43778 
1.43021 
0.42984 
-1.56945 
-2.57843 
-3.60054 
9.80051 
5.54633 
1.79339 
-1.81063 
-5.56503 
13.40149 
8.73303 
5.02387 
1.77317 
-4.54292 
-8.16306 
-12.65104 

1.16558 
1.11111 
1.08766 
1.09411 
1.12975 
1.28763 
1.41027 
1.56296 

0.81809 
0.10848 
-0.07287 
0.17812 
0.86167 
0.54975 

-0.76042 
-1.37606 
-1.52675 
-0.70808 

0.33189 
2.02077 
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Fig. 4. In-plane sections of the hypoid worm  
 
NOTE The hypoid worm’s profiles, in Z=H planes, 
were drew for the variation limits of t and t1 
parameter, see equation (36) and (37):  

-for the left flank, 

 bh r cost ;
cos cos
− θ

=
θ ψ

 (55) 

-for the right flank, 

 b
1

1

h r cost .
cos cos
− θ

=
θ ψ

 (56) 

 
 

Right 
flank 

Left 
flank 

Characteristical
curves

 
Fig. 5. The hypoid wheel flank’s surfaces 

 
For the worm’s profiles presented (see figure 4 

and tables 1 and 2) based on the established algorithm 
in the 7.1 paragraph, were determined: 

-the hypoid wheel’s flanks (see Fig. 2) 
-the characteristic curves, equation (43), 

condition (52) and f1=constant; 
-the profiles lines of the hypoid wheel in 

normal planes on the wheel (equation (43), (52) and 
(54)). 

In table 3, are presented the profiles lines’ co-
ordinates and the characteristic curves’ coordinates. 

 
 
 
 
 
 
 
 
 

Table 3. Right  flank

Left  flank

The profiles lines 
Right flank 

X 
[mm] 

Y 
[mm] 

Z 
[mm] 

-35.2079 
-35.4703 
-35.4567 
-35.7222 
-45.6492 
-35.2955 
-34.6282 
-33.9386 

64.1251 
64.4510 
64.4559 
64.7820 
68.1977 
65.0351 
64.9439 
64.8478 

-3.0224-
2.0454 
-1.9968 
-1.0197 
0.0367 
1.0350 
2.0152 

3.0445 
Left flank 

-35.2079 
-35.4703 
-35.4567 
-35.7222 
-45.6492 
-35.2955 
-34.6282 
-33.9386 

66.4889 
66.0123 
65.9671 
65.5145 
64.9900 
64.3133 
63.6398 
62.9532 

-3.0239 
-2.0293 
-1.9514 
-1.0085 
0.0471 
1.0425 
2.0208 
3.0080 

 
Table 4. 

The left characteristic curves 

2 0ϕ =  2ϕ = π  
-53.7984 
-53.8059 

… 
-53.9848 
-53.9865 
-53.9882 

… 
-54.2859 
-54.2881 
-54.2860 

63.2809
63.3317

… 
64.6522
64.6523
64.6575

… 
67.2601
67.2602
67.2651

3.7282 
3.6415 

… 
1.3799 
1.3799 
1.3712 

…. 
-3.1042 
-3.1042 
-3.1129 

-49.8094 
-49.8104 
-49.8071 

… 
-49.8697 
-49.8678 

…. 
-50.0324 
-50.0344 
-50.0342 

62.829 
62.834 
62.839 

… 
63.655 
63.660 

…. 
66.819 
66.825 
66.830 

3.7272 
3.7185 
3.7099 

… 
2.3238 
2.3152 

…. 
-3.0854 
-3.0940 
-3.1027 

 
In figure 6, there is a 3d view of the hypoid 

wheel’s teeth. 
 

 
Fig.6. The hypoid wheel’s teeth 

 
8. Conclusions 

 
The suggested model allows, by 

particularizing, studying a wide range of crossed axis 
gears. The model, developed on the base of both 
enveloped surfaces general theory and 
complementary theorems, has the capability to 
rigorously describe teeth flanks profiles for gearing 
elements. 
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Algoritm pentru studiul angrenajului spiroidal 
 

Rezumat 
 

În lucrare, se propune un model, cu caracter de generalitate, pentru studiul 
suprafeţelor reciproc înfăşurătoare, utilizând teoremele fundamentale şi 
complementare ale teoriei înfăşurării suprafeţelor. Prin particularizări, modelul 
poate fi privit ca reprezentând o multitudine de tipuri de angrenaje cunoscute: 
angrenajul melcat, angrenajul spiroidal, angrenajul cu axe paralele, angrenajul conic 
etc. Se prezintă o soluţie privind angrenajul spiroidal cilindric. 

 
 

Algorithme pour l'etude de l’engrenage spiroïdal 
 

Résumé 
 

Dans ce papier on presente un modèle, avec le caractère général, étudier des 
surfaces enveloppe, en utilisant des théorèmes fondamentaux et complémentaires 
d'envelopper des surfaces. Le modèle peut être considéré comme le fait de 
représenter une multitude de types connus d’engrenages. On présente l’engrenage 
spiroïdal. 
 


	ABSTRACT 
	This paper suggests a model, with general character, to study reciprocal wrapped surfaces, by using basic and complementary theorems of wrapping surfaces. By its particularizations, the model can be considered as representing a multitude of known types of gears: worm gear, hypoid gear. 
	Keywords: wrapping surfaces, crossed axis gears. 


