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ABSTRACT 

 
This paper is the second part of a study of the active control of Bénard-
Marangoni convection of an infinite fluid layer with a finite lower 
boundary. A linear proportional control method is used to perturb the 
lower boundary heat flux proportional to the local amplitude of a 
shadowgraph measurement. The influence of the boundary layer properties 
(thickness, thermal conductivity and diffusivity) on the active control 
process is analyzed. It is noticed the appearance of an isola, for a certain 
range of process parameters, as a primary bifurcation towards a time-
dependent convection.  
Keywords: active control, melted material layer, convection. 

 
1. Introduction 

Since Pearson [1] proved the phenomenon of 
surface tension-driven convection and Nield [2] 
the co-existence of buoyancy and surface 
tension-driven convection, many researchers 
studied these phenomena trying to establish 
clear connection between them. The Rayleigh-
Bénard convection and Bénard-Marangoni 
convection do reinforce each other in the 
context of the assumption that the upper fluid 
boundary remains flat [2]. Even if this 
simplification was already questioned in several 
studies and Scriven and Sternling [3] concluded 
that the surface deformability may render the 
layer of fluid unstable under virtually all 
conditions, the flat upper boundary condition is 
an assumption which, used in the theoretical 
studies of Bénard-Marangoni convection, meets 
good verification [4-5]. This paper is also 
considering that the upper surface is flat. For 
small values of Rayleigh numbers (3.0e-7) and 
thin fluid layers, Bénard-Marangoni convection 
is responsible for the pattern formation. If the 
experimental work questioned the stability of 
patterns which arise and the existence of an 
unique value for Marangoni number, numerical 
modeling tried and confirmed the experimental 
results: the energy stability theory [6], the 
linear stability analysis [1], [2] and bifurcation 
analysis [7-8]. This study is a linear stability 
analysis of a linear proportional method for the 
active control of Bénard-Marangoni convection. 

Rayleigh-Bénard convection and Bénard- 

Marangoni convection are not always desired 
phenomena in industrial applications. The delay 
or suppress of convection in Rayleigh-Bénard 
and Bénard-Marangoni convection has received 
a great attention in the last period [9÷10].
 Theoretical studies [11÷14] as well as 
experimental works [15÷16] analyzed different 
methods of control of Rayleigh-Bénard 
convection. The successful results of Tang and 
Bau [17] initiated the active control of 
Rayleigh-Bénard convection through the control 
of temperature or heat flux at the fluid lower 
boundary. According to the classification 
established by Gad-el-Hak [18], these are active 
reactive feedback control methods.  

This work is studying the active control 
of surface tension-induced convection of 
infinite horizontal fluid layers heated from 
bellow with a constant flux, situation which 
corresponds experimentally to a novel 
shadowgraphic system. 
 

2. Mathematical formulation 
For the case of Bénard-Marangoni convection, 
with the addition of a finite thickness lower 
boundary, the equation for the perturbation 
temperature amplitude, Θ: 
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Θ−= Ra 2 ,                (1) 
where a is the wave number, σ is the growth 
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Fig.1. Fluid layer with finite lower boundary. 
 
rate, R is the Rayleigh number, Pr is the Prandtl 
number and D is the notation for a/D ∂∂= . 
The solution of equation (1) is: 
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where xi, i=1…3 are the roots of the 
characteristic equation: 
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The perturbation equation of the lower 
boundary is: 

                    ( ) l
22

l aD θ−η=σθ ,   (4) 
where η is thermal diffusivities ratio of the 
lower boundary layer and the fluid, kl/kf; its 
temperature field is given by: 
          ( ) ( zxsinhBzxcoshA lll )+=θ ,  (5) 
where the characteristic value xl is the root of 
the equation: 
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 The eight boundary conditions necessary 
for finding the coefficients Ei, Oi, A and B, and, 
consequently, the perturbation temperature 
amplitude, Θ, are: 
• the no penetration condition, applied at 
upper and lower boundary of the fluid layer, 
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• the no slip condition, applied at the lower 
boundary of the fluid layer, 
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• the thermal transfer condition applied at the 
upper boundary, 
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• the condition of surface-tension driven 
convection, 
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applied at the upper boundary. Bi is the Biot 
number, the Marangoni number 

ρν
γ

=
ff
s

Kk
qd

Ma , d is the fluid layer thickness, 

q  is the medium heat flux, kf is the fluid 
thermal diffusivity, Kf is the fluid thermal 
conductivity, ρ is the fluid density, ν is the 
fluid viscosity and γs is thermal coefficient of 
surface tension. 
• the continuity of temperature at the fluid 
lower boundary, 
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• the continuity of flux at the fluid lower 
boundary, 
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• the condition for surface-tension driven 
convection at the upper boundary, 
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where λ is the ratio of the thermal 
conductivities of the fluid and the lower 
boundary layer, Kf/Kl.  

In order to establish the onset of 
convection we have to solve: 
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3. Simulation results 

Depending on the value of the proportional gain 
and the lower boundary properties, the system 
looses stability through a real eigenvalue to 
stationary convection or through an imaginary 
eigenvalue to a time-dependent convection.  
Figures 2÷4 show the bifurcation evolution for 
dl = 0.5 (dl is the relative thickness of the lower 
boundary layer), η = 1.0 and λ = 1.0. For values 
of the proportional gain smaller than 41.234 the 
critical state correspond to a steady-state (S) 
convection. 

 
 
Fig. 2. Loss of stability toward a stationary 
convection (S), a time-dependent convection of 
(H2) or (Hi) type, for dl = 1.0, η = 1.0, λ = 1.0, γ 
= 41.234. 

When γ is higher than 41.234, the system 
could looses stability toward a time dependent 
convection of H2 (dashed curve in Fig. 2) or 
isola (Hi type, the point represented in Fig. 2) 

type. The isola point determines the critical 
state which in this case corresponds to: ac = 
1.45, Mac = 29.3439, σc = 8.1173. 
Consequently, for values of γ higher than 
41.234, the onset will be towards a time-
dependent (Hi) convection. 

 

S

 
Fig. 3. Opening of isola point into a closed 

curve for dl=1.0, η=1.0, λ=1.0, γ = 41.4. 

 
Fig. 4. The location of saddle point at ac = 
0.8045, Mac = 208.7764, σ = 4.3021 and γ = 
47.7200 for dl = 1.0, η = 1.0, λ = 1.0. 
  
Increasing the proportional gain, the S curve 
moves towards higher values of Marangoni 
number while the H2 curve shifts downward. 
Isola point evolves towards a closed curve Hi. 
The state corresponding to the minimum 
Marangoni number of Hi curve is now the 
critical state. Fig.3 illustrates its evolution for γ 
= 41.4. Continuing to increase the proportional 
gain, the H2 and Hi curves meet at a saddle 
point. This is illustrated in Fig. 4 for γ = 
47.7200. The saddle point, for this case 
corresponds to: ac = 0.8045, Mac = 208.7764, σc 
= 4.3021.  
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 The existence and/or co-existence of 
isola and saddle points depends on the lower 
boundary physical and thermal properties 
(thickness, thermal conductivities, thermal 
diffusivities). Depending on the values of these 
parameters H2 and/or Hi curves cannot exist.  

Mac
M

 
3.1 The influence of the lower boundary  
thickness 
 

γ log(dl)

Ma  

H2

 
Fig. 5. The dependence of critical Marangoni 
number of isola and saddle points on the lower 
boundary thickness. The intersection point has 
the parameters ac = 1.1401, Mac = 89.3929, σc = 
5.676832, γ = 39.8052, dl = 1.0618, η = 1.0, λ = 
1.0. 
 
 The lower boundary thickness has a 
critical influence on the position of critical 
Marangoni number in the parameters field. 
Figure 5 shows the evolution of Marangoni 
number for λ = 1.0 and η = 1.0 of isola and 
saddle points as a function of the lower 
boundary thickness, dl. There is a point where 
isola and saddle point coincide. For our 
example it corresponds to: ac = 1.1401, Mac = 
89.3929, σc = 5.6768, γ = 39.8052 and dl = 
1.0618. For values of lower boundary thickness 
above that point, the loss of stability through 
the appearance of an isola cannot occur. This 
implies that smaller values of boundary 
thickness are desirable as they shift the onset of 
convection towards higher values of Marangoni 
number. As the boundary layer thickness 
increases, the loss of stability meets an S→H2 
transition. 

Figure 6 illustrates this aspect in a plot of 
critical Marangoni number against the 
proportional gain and lower layer thickness. 
The plot presents the Mac-γ dependence for 
twelve values of boundary thickness around the 
dl = 1.0 value. The plot considers λ = 1.0 and η 
= 1.0. Increasing the lower boundary layer 
thickness, we actually increase the amount of 
time it takes for a change in the flux at the 
lower boundary to reach the fluid. 

Fig. 6. Critical Marangoni number plotted 
against the proportional gain and boundary 
thickness for the thermal diffusivities   ratio η 
= 1.0 and the thermal conductivities ratio  

Hi
Mac

λ = 1.0. 
 
3.2 The influence of the lower boundary 
thermal conductivity 
 

Macdl

γ log(λ) 

Fig. 7. Critical Marangoni number plotted 
against the proportional gain and thermal 
conductivities ratio for the boundary thickness 
dl=0.5 and the thermal diffusivities   ratio 
η=1.0. 
 
 For a lower boundary layer thickness of 
dl = 0.5 and η =1.0, we plotted the dependence 
of critical Marangoni number-proportional gain, 
γ, for twelve values of λ around λ = 1.0 value. 
Figure 7 presents the dependence obtained for a 
range of proportional gain between 1 and 50. 
For the lower boundary thickness considered we 
don’t have an S→H2 transition. The value of the 
proportional gain at which S→Hi transition 
occurs is bigger as λ has smaller values. For 
values of λ<1, an increase of lower boundary 
thermal conductivity leads to a slight variation 
of the maximum critical Marangoni number . 
 
3.3 The influence of the lower boundary 
thermal diffusivity 
 

For a lower layer thickness of dl = 0.5 
and λ = 1.0, Fig. 8 presents the dependence of 
critical Marangoni number-proportional gain 
for twelve values of η around η = 1.0 value and 
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for a range of proportional gain between 0 and 
50. An increase of the thermal diffusivity of the 
lower boundary material leads to a shift S→Hi 
transition towards higher values of the 
proportional gain γ. A higher thermal 
diffusivity of the lower boundary material 
means a faster response of the system to the 
influence of the control system and, 
consequently, higher efficiency in other words 
higher values for the maximum critical 
Marangoni number.  

 
Fig. 8. Critical Marangoni number plotted 
against the proportional gain and thermal 
diffusivities ratio for the boundary thickness 
dl=0.5 and the thermal conductivities ratio 
λ=1.0. 
  

4. Conclusions 
 Using the linear stability analysis, the 
paper studies the onset of convection of infinite 
fluid layers with finite lower boundary heated 
from below with a constant heat flux. 
Considering microgravity conditions for the 
numerical simulation, Bénard-Marangoni 
convection is the driven phenomenon of the 
pattern formation. 
 For a finite thickness lower boundary, the 
physical and thermal properties of the lower 
boundary are coming into play when the system 
looses stability through a real eigenvalue 
towards a steady-state convection or through an 
imaginary eigenvalue towards a time-dependent 
convection. Depending on the lower boundary 
layer properties, the time dependent convection 
can be of H2 and/or Hi type meaning a dramatic 
decrease of the critical Marangoni number 
appears at smaller values of lower boundary 
thickness. An increase of the maximum critical 
Marangoni number can be obtained increasing 
the boundary layer thermal conductivity till the 
point where it becomes higher than the thermal 
conductivity of the fluid or increasing the 
thermal diffusivity of the lower boundary. 
 This work shows clearly how the onset of 
convection in an infinite fluid layer heated from 
bellow with a constant flux can be shifted 

toward higher values of Marangoni number 
using an active control process. It also 
establishes guidelines for the choice of those 
physical and thermal properties of the lower 
boundary which enhance the delay of 
convective state. 
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Controlul Activ al Convecţiei unui Strat de Material Topit 
II. Convecţia cu Strat Limită Finit 

 
REZUMAT 

 
Acestă lucrare este partea a doua a unui studiu asupra controlului activ al 
convecţiei Bénard-Marangoni într-un strat de fluid infinit cu un strat 
limită finit. Metoda de control utilizată modifică fluxul termic 
proporţional cu amplitudinea aparatului de măsură. Influenţa 
proprietăţilor stratului limită (grosime, conductivitate şi difusivitate 
termică) asupra procesului de control activ este analizată. Noutatea 
acestui studiu constă în apariţia unui punct izolat, pentru anumite domenii 
ale parametrilor, ca bifurcaţie către convecţia variabilă în  timp. 

 
 
 
 
 
 
 
 
 

Aktive Steuerung der Konvektion in einem  
geschmolzenen materiellen Layer 

II. Konvektion mit einer begrenzten niedrigeren Grenze 
 

AUSZUG 
 

Dieses Papier ist das zweite Teil einer Studie der aktiven Steuerung von 
Bénard-Marangoni Konvektion einer endlosen flüssigen Schicht mit einer 
begrenzten niedrigeren Grenze, die vom Gebrüll mit einem konstanten 
Hitzefluß geheizt wird. Eine lineare proportionale Steuermethode wird 
verwendet, um den niedrigeren Grenzhitzefluß zu stören, der zum lokalen 
Umfang eines Shadowgraphmaßes proportional ist. Der Einfluß der 
Grenzschichteigenschaften (Stärke, Wärmeleitfähigkeit, 
Temperaturleitvermögen) auf den aktiven Steuerprozeß wird analysiert. 
Eine große Neuheit dieser Studie ist das Aussehen eines isola, für eine 
bestimmte Strecke der Prozeßparameter, als Primärgabelung in Richtung 
zu einer zeitabhängigen Konvektion. 
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