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ABSTRACT 
This paper presents an experimental method for the determination of the thermal 

diffusivity of solids. The analytical expression is match with the experimental results 

through the value of the thermal diffusivity of the solid. Easy to implement, this 

method can be used as a laboratory of a heat transfer course. 
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1. INTRODUCTION 
 

The measurement of the physical properties of a 

solid is a very good opportunity for the students to 
understand in a better way the physical phenomena. In 

this category, the thermal diffusivity measurement is a 

classical example used in the heat transfer 

laboratories.  

This paper presents an example of the way in 

which the thermal phenomena, and particularly, the 

thermal diffusivity is studied using a simple 

experimental set-up.    

  

2. MATHEMATICAL MODEL 
 

Figure 1 presents the experimental set-up used 

to measure the thermal diffusivity of a solid material. 

A cylindrical rod is considered as being infinitely 

long because its length, L, is much bigger than its 

radius. The rod is heated by a flux of air of constant 

temperature, T1, at the abscissa Lx   and it is 

isolated at all the other boundaries. The ambient 

temperature has a constant temperature, T0, while h is 

the convection heat transfer coefficient between the 

rod and the environment.  
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Fig. 1. The experimental set-up 

 

The heat transfer equation for the rod: 
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the initial condition: 
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are transformed using the definition of θ: 
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The new form of the governing equation: 
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and the new form of the initial and boundary 

conditions, Eqs. (7-9): 
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Lx  , 
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(9) 

are solved using the three steps that are well known in 

the scientific literature [1]: 

 

Step 1: The direction of the homogenous boundary 

conditions. 

The boundary conditions, Eq. (8) and Eq. (9), reveal 

the abscissa x as a direction of the homogenous 

boundary conditions.  
 

Step 2: The separation of the variables. 

The two variables, the space (x) and the time (t), 

require us to consider that the dimensionless 

temperature, θ, is the product of two functions: X(x), 

a function of space, and (t), a function of time:  

 

     txXy,x   (10) 

 

Replacing Eq. (10) in Eq. (6), 
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 , 
(11) 

and dividing by X on both sides of Eq. (11), we 

obtain Eq. (12): 
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The left side of Eq. (12) is a function of space, 
x, while the right side of Eq. (12) is a function of 

time, t. This situation requires that both sides of Eq. 

(12) to be constant: 
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The minus sign in Eq. (13) is imposed by the fact that 

the abscissa x is a direction of homogeneous 

boundary conditions.  

The general solution of Eq. (13) is: 
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, where C1, C2, C3 and  are unknown constants. 

Consequently, θ has the following form: 
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(15) 

 

The unknowns: C1, C2, C3 and  are found using 

the initial and the boundary conditions, Eqs. (7-9). 

Equation (8) imposes: 
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or 

0C1   (17) 

 

Equation (18) shows the new form of the 

dimensionless temperature, θ: 
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32
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(18) 

 

Defining MCC 32  , we have the following result: 

 

 xcosMe t2
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(19) 

 

Equation (9) and Eq. (19) lead us to: 

     
Lx

xcoshMe xsineM k tt 22


   or 

   
k

hL
  LtgL  . Making the notation La  , we 

obtain: 

  Biatg a   (20) 

 

Here, 
k

hL
Bi  , the Biot number, represents the 

dimensionless heat transfer coefficient between the 

rod and the environment. 

Equation (20) has an infinity of solutions, an. θ 

becomes: 

 

 







1n
n

t
n xcoseM

2
n  

(21) 

 

Step 3: The orthogonality condition. 

The coefficients Mn are found using Eq. (7) and Eq. 

(21): 
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  or 
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Multiplying Eq. (23) with  xcos m  and integrating 

between 0x   and Lx  , we obtain Eq. (24): 
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Using the orthogonality condition of cosines 

function: 
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Eq.  (24) becomes:  
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After solving the integrals of Eq. (26), Mn becomes: 
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, while θ, Eq. (21), becomes: 
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The temperature we measure, at the abscissa 

0x  , T2, is: 
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3. RESULTS AND DISCUSSIONS 
For the experimental set-up presented by Table 

1, the first five solutions of Eq. (20) were established 

and they are presented by Table 2. 

 

Table 1. The experimental set-up 

Variable T0 T1 L 

Value 24.0°C 190°C 34cm 

 

Table 2. The first five solutions of Eq. (20). 

a1 a2 a3 a4 a5 

0.435 3.205 6.315 9.445 12.585 

 

 The measured and the calculated values of the 

temperature at the isolated end of the rod are 

presented by Table 3 and Fig. 2 for a Biot number of 

0.2 and the thermal diffusivity α=1.08 cm2/s. This is 

the Biot number and the thermal diffusivity that 

assure the best concordance between the measured 

and the calculated values of the temperature T2. In this 

case the standard deviation 
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 (where N is the number 

of the measurements) has a value of 1.089. 
 

4. CONCLUSIONS 
This paper presents an experimental method 

designed to measure the thermal diffusivity of solids. 

The experimental set-up and the mathematical 

modeling are appropriate for a heat transfer laboratory 

where the students can obtain a better understanding 
of the thermal phenomena that occur and of the 

techniques used in the analysis of the non-stationary 

heat transfer regimes. 
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Table 3. The experimental and the numerical data. 

Nr. 

Crt. 

t 

[min] 

Tmeasured 

[°C] 

T2 

Eq. (29) 

1 2 24.65 23.25 

2 4 25.34 26.50 

3 6 27.62 29.54 

4 8 30.49 32.78 

5 10 33.75 36.04 

6 12 37.31 39.25 

7 14 40.75 42.41 

8 16 44.19 45.51 

9 18 47.52 48.54 

10 22 53.98 54.42 

11 24 57.2 57.26 

12 26 60.31 60.05 

13 28 63.04 62.78 

14 30 65.75 65.45 

15 34 71.17 70.62 

16 36 73.59 73.313 

17 38 75.80 75.58 

18 40 78.02 77.98 

19 42 80.14 80.33 

20 50 88.96 89.25 

21 52 91.06 91.37 

22 54 92.97 93.44 

23 56 95.36 95.47 

24 58 97.26 97.45 

25 60 99.07 99.39 

 

 
Fig. 2. The experimental and the numerical data 
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