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ABSTRACT 
We are familiar with everything necessary to create the image of a point or a line 

in digital environment, and we can represent many points in both 2D and 3D. In order 

for these sets of points, projected in a design software, to be transformed into 

somewhat suggestive images of solid objects, it is necessary to know the order in 

which certain points must be connected  by segments or curves, thus suggesting 

constructive surfaces to the operator. The information needed to build a body image 

is stored in a "database", having a very well-defined ordered structure of numbers 

and characters. The structure of the database strongly influences the speed of work, 

the required memory of the program, its flexibility, as well as the ease of writing the 

program. This paper presents some common ways of organizing data to generate 

different types of simple representations in ascending order of complexity. 

KEYWORDS: point cloud, wireframe, polygon mesh, curves and 

curved surfaces. 

1. INTRODUCTION 

We are familiar with everything needed to create the 

image of a point or line in a digital environment, which 

allows us to represent a large number of points in both 

2D and 3D. 

In order for these sets of points projected in a design 

software to be transformed into the most suggestive 

possible images of solid objects, it is necessary to know 

the order in which certain points must be joined 

together by segments or curves, thus suggesting 

constructive surfaces to the operator. 

The information required to build a body image is 

stored in a "database", having a very well-defined 

ordered structure of numbers and characters. Its 

structure strongly influences the speed of work, the 

memory required by the program, its flexibility, as well 

as the ease of writing the program [1]. 

This paper presents some common ways of 

organizing data to generate different types of simple 

representations, listed in increasing order of 

complexity. 

 

2. VARIOUS NUMERICAL 

REPRESENTATIONS OF 3D OBJECTS 

2.1. In the form of a cloud of points 

The numerical model of a surface consists of the 

coordinates of a set of points chosen on that surface to 

describe it as accurately as possible. 

If the object to be modeled has surfaces composed 

of flat facets, an exact model of it can be obtained using 

the coordinates of the vertices of these facets. 

However, since many real-world bodies that need 

to be modeled have curved surfaces, the models are in 

most cases approximate. Of course, the approximation 

can be made as accurate as possible, which is why there 

are numerically controlled machining centers for 3D 

curved surfaces, which, based on the coordinates of a 

point cloud, physically create the projected surface 

with the desired precision. 

For the set of points that model a body, typically its 

surface, we can set 2 types of conditions [1]: 

1) The surface of the body must actually pass 

through the given points. 

2) The distance between the real surface and the 

points defining the model must not exceed a 

user-imposed limit. 

This type of representation was initially used in 

medicine and chemistry and was later adopted in other 

application areas of interactive graphics. 
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The basic element of many data structures used in 

computer graphics, and the only one used for point 

representation, is the vertex list. A vertex, or branching 

node, is a point on the surface of a model where several 

lines used in the representation of that body meet. The 

term has also been extended to point representation, 

where no lines appear as elements of the resulting 

drawing. 

A vertex list begins by specifying the total number 

of points, and then, for each point, its 3D coordinates 

are provided. In the case of the tetrahedron in Figure 1, 

the vertex list has the form: 

 
Fig. 1. List of vertices of the tetrahedron [1] 

 

{

[1] 𝑥1 𝑦1 𝑧1
[2] 𝑥2 𝑦2 𝑧2
[3] 𝑥3 𝑦3 𝑧3
[4] 𝑥4 𝑦4 𝑧4

 

 

The vertex list can be either complete or truncated: 

- A complete list contains the coordinates of all 

points that describe the body. 

- A truncated list includes information about 

only a subset of points, as well as other 

information needed to determine the 

coordinates of the remaining points using 

symmetries, rotations, translations, and 

scaling. 

 
Fig. 2. Body defined in a Cartesian system xOyz 

 

As an example, we can consider the body in Figure 

2, defined in a Cartesian reference frame xOyz 

(defining reference frame). A truncated list of vertices, 

in the composition of which symmetry with respect to 

the yOz plane is taken into account, does not include 

the coordinates of points P5 and P9. 

However, it is necessary to group the points into 

parallel cross-sections and specify that the number of 

points that make up each section. 

2.2. Wireframe 

The name "wireframe" comes from the similarity 

between this type of representation and a model of the 

object created in the form of a wireframe. In wireframe 

representation, the concepts of volume and surface are 

not used. A body is represented as a set of line 

segments or portions of curves. 

For wireframe representations composed of line 

segments, we have the following forms of data storage 

for creating a wireframe representation of an object: 

 

a) Explicit segments – In this form, an object is 

seen as a collection of segments, for which the total 

number of elements is known. For each segment, the 

following information is specified: 

[i] – optional segment index, 

x1, y1, z1, x2, y2, z2 – the coordinates of the segment’s 

endpoints. 

Since the coordinates of the endpoints are specified 

in the segment list, a vertex list is not used. The method 

requires a relatively large amount of memory, since 6 

coordinates are specified for each segment. 

Additionally, when a curve is composed of several 

concatenated segments, many points may appear at 

least 2 times in the list. 

For example, consider the body in Figure 3. The 

corresponding data structure will have the following 

form: 

 
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 1.    𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 2.    𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 3.    𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 4.    𝑥1 𝑦1 𝑧1 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 5.    𝑥2 𝑦2 𝑧2 𝑥6 𝑦6 𝑧6
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 6.    𝑥3 𝑦3 𝑧3 𝑥7 𝑦7 𝑧7
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 7.    𝑥4 𝑦4 𝑧4 𝑥8 𝑦8 𝑧8
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 8.    𝑥5 𝑦5 𝑧5 𝑥9 𝑦9 𝑧9
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 9.    𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 10.  𝑥3 𝑦3 𝑧3 𝑥4 𝑦4 𝑧4
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 11.  𝑥4 𝑦4 𝑧4 𝑥5 𝑦5 𝑧5
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 12.  𝑥5 𝑦5 𝑧5 𝑥2 𝑦2 𝑧2
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 13.  𝑥6 𝑦6 𝑧6 𝑥7 𝑦7 𝑧7
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 14.  𝑥7 𝑦7 𝑧7 𝑥8 𝑦8 𝑧8
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 15.  𝑥8 𝑦8 𝑧8 𝑥9 𝑦9 𝑧9
𝑆𝑒𝑔𝑚𝑒𝑛𝑡 16.  𝑥9 𝑦9 𝑧9 𝑥6 𝑦6 𝑧6
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b). Implicit segments – In this form, each segment 

is specified by a pair of indices that identify its 

endpoints in a list of vertices. The amount of memory 

required is reduced compared to the previously 

presented form. 

 
Fig. 3. Model of the object made in the form of a 

wireframe 

 

The data structure for the object in Figure 3 has the 

following form: 

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

{
 
 
 
 

 
 
 
 
1  𝑥1 𝑦1 𝑧1
2  𝑥2 𝑦2 𝑧2
3  𝑥3 𝑦3 𝑧3
4  𝑥4 𝑦4 𝑧4
5  𝑥5 𝑦5 𝑧5
6  𝑥6 𝑦6 𝑧6
7  𝑥7 𝑦7 𝑧7
8  𝑥8 𝑦8 𝑧8
9  𝑥9 𝑦9 𝑧9

1    1 2
2    1 3
3    1 4
4    1 5
5    2 6
6    3 7
7    4 8
8    5 9
9    2 3
10  3 4
11  4 5
12  5 2
13  6 7
14  7 8
15  8 9
16  9 6

 

 

c). Lines given by indices – When a polygonal line 

can be described by concatenating a string of segments, 

it is more appropriate to use the following type of data 

structure for the object in Figure 3: 

 

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

{
 
 
 
 

 
 
 
 
1 𝑥1 𝑦1 𝑧1
2 𝑥2 𝑦2 𝑧2
3 𝑥3 𝑦3 𝑧3
4 𝑥4 𝑦4 𝑧4
5 𝑥5 𝑦5 𝑧5
6 𝑥6 𝑦6 𝑧6
7 𝑥7 𝑦7 𝑧7
8 𝑥8 𝑦8 𝑧8
9 𝑥9 𝑦9 𝑧9

1. 5 6 2 1 3 7
2. 5 9 5 1 4 8
3. 5 2 3 4 5 2
4. 5 6 7 8 9 6

 

Here, each line is described as follows: 

[i] – optional line index. 

np – number of points on the line. 

j1, j2, ... ,jnp – indices that locate the ends of the 

segments that make up the line in the vertex list. 

 

d). Cross-sections and longitudinal lines – The 

procedure is the same as for lines given by indices, but 

most of the cross-sections are those for which the 

database structure was previously presented. 

The database for the body in Figure 3 is as follows: 

𝐿𝑖𝑠𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠

{
 
 
 
 

 
 
 
 
1 𝑥1 𝑦1 𝑧1
2 𝑥2 𝑦2 𝑧2
3 𝑥3 𝑦3 𝑧3
4 𝑥4 𝑦4 𝑧4
5 𝑥5 𝑦5 𝑧5
6 𝑥6 𝑦6 𝑧6
7 𝑥7 𝑦7 𝑧7
8 𝑥8 𝑦8 𝑧8
9 𝑥9 𝑦9 𝑧9

 

 
1, 4, 4 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

5, 6, 2, 1, 3, 7 − 𝑐𝑢𝑟𝑣𝑒 1
5, 9, 5, 1, 4, 8 − 𝑐𝑢𝑟𝑣𝑒 2

 

 

If a set of points that constitute the successive ends 

of concatenated segments are collinear, obviously, it is 

sufficient to specify only the extremities of the 

polygonal line with this property. 

Although wireframe representation is somewhat 

simplistic and does not provide complete information 

on the geometry of the body, due to its ease of use and 

the speed of displaying the representation, it is widely 

used today. By using the wireframe technique, high 

work speeds and even interesting animation effects can 

be achieved using less sophisticated materials. 

 

2.3. Polygon network 

The "wireframe" representation of a 3D object does not 

allow for the definition of surfaces and, therefore, the 

calculation of areas, volumes, masses, centers of 

gravity, or the display of the visible portion of the 

analyzed object on screen. Simple representations that 

allow for the recognition of surfaces and the 

performance of calculations related to these surfaces 

are obtained through 2 body modeling processes: 

surface modeling and solid modeling. In the first case, 

a body is modeled by specifying its boundary, 

effectively modeling a surface. The latter can be 

obtained as the surface of a polyhedron, composed of a 

network of flat polygonal facets, or as a curved surface 

in space, composed of portions or "patches" of curved 

surfaces. [3] 

In the case of solid modeling, the body is "built" by 

joining elementary volumes- such as cubes, pyramids, 

tetrahedra, spheres, and cylinders - that approximate 

the desired shape as closely as possible. Both processes 

fall under the more general class of geometric 

modeling, also called shape modeling. [4] 
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Polyhedral or polygon mesh representation 

involves modeling 3D objects using one or more 

polyhedral surfaces. Each polyhedral surface is treated 

as a collection of adjacent planar polygonal facets. If 

the real object has curved surfaces, its polygonal model 

will, of course, be an approximation. This 

approximation can be made as good as possible by 

increasing the number of planar polygonal facets that 

model a curved surface. The disadvantage is an 

increased memory requirement, but it is worth 

remembering that algorithms for processing planar 

polygonal surfaces are much simpler than those for 

curved surfaces. [5] 

For this reason, most applications that do not 

require the actual processing of the analyzed body rely 

on polyhedral modeling, making a compromise 

between precision on the one hand, required volume of 

memory, simplicity and speed of work, on the other 

hand. 

The approximation of a curved profile by a 

polygonal line is represented in Figure 4 a), and the 

approximation of a curved surface by a polyhedral 

surface in Figure 4 b). [6] 

 

 
Fig. 4. Approximation of a curved profile by a 

polygonal line (a) and Approximation of a curved 

surface by a polyhedral surface (b) 

 

As basic elements for polyhedral modeling, we 

encounter again the list of vertices. This time, the 

points whose coordinates are written in the list will 

represent the vertices of the polyhedron. These, 

together with the edges and faces of the polyhedron, 

constitute the defining elements of the polygonal mesh. 

Depending on the requirements of the program we 

are developing, we can store the information necessary 

to represent polygonal vertices, edges, and facets in 

various ways. 

The criteria by which we choose the form of data 

storage mainly concern 2 features of the program: the 

amount of memory required and the speed of operation. 

Since increasing speed typically requires more 

memory, we usually resort to compromises: we first 

determine the type of computer for which we are 

writing the application, and then, depending on the 

available memory and the maximum complexity that 

we expect for the bodies that we will have to model, we 

choose the form of data storage. To increase the speed 

of work, it is useful to be able to quickly and easily 

identify the following: 

a) The edges of a given polygon. 

b) The endpoints of a given edge. 

c) Polygons that have a given side in 

common. 

d) Edges that converge at a vertex. 

It is also necessary to choose an order of 

representation of the facets so that the observer can 

better understand the depth relationships between them 

(dynamic construction). 

When working with a polygonal network, it is 

essential to traverse all the facets of the network one by 

one, for example, in a loop. The vertices of a facet can 

be specified in 2 ways: 

1. Explicitly, where the vertices that define a facet 

are read either as indices in the vertex list or by 

coordinates. 

2. Implicitly, where the vertices that define a facet 

are determined as indices in the vertex list based on an 

algorithm for "traversing" this list. 

The first method has the advantage of being faster, 

but the memory required is generally larger. We will 

refer to this as “read-through facet traversal”. The 

second variant is much slower, but also has much lower 

memory consumption. We will refer to it as “generate 

facet traversal”. 

2.4. Curves and curved surfaces 

Curved shapes are more difficult to represent, but 

are particularly useful in computer-aided processing, as 

well as in applications where precise calculations are 

required. Various models may require the 

representation of curved curves and/or surfaces in 3 

dimensions. To simplify calculations, parametric 

representations of these geometric varieties are used. 

The curves or surfaces can then be described by 

traversing the domain of definition of the parameters 

usually used, namely the interval [0,1], with a 

conveniently chosen step. [4,7] 

Cubic parametric curves 
It can be shown that cubic parametric functions, in 

which the parameters appear to the 3rd power, have the 

minimum degree necessary to satisfy 2 conditions: the 

represented 3D curve must pass through 2 points and 

have given tangents at those points (Figure 5). 
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Fig. 5. Cubic parametric curves 

 

Curve C is described by the relationships: 

 

 {

𝑥(𝑡) = 𝑎𝑥𝑡
3 + 𝑏𝑥𝑡

2 + 𝑐𝑥𝑡 + 𝑑𝑥
𝑦(𝑡) = 𝑎𝑦𝑡

3 + 𝑏𝑦𝑡
2 + 𝑐𝑦𝑡 + 𝑑𝑦

𝑧(𝑡) = 𝑎𝑧𝑡
3 + 𝑏𝑧𝑡

2 + 𝑐𝑧𝑡 + 𝑑𝑧

   (1) 

 

Where 𝑡 is a parameter between 0 and 1, 

(𝑡 ∈ [0, 1]). 
The tangent vector to the curve in 

𝑥(𝑡∗), 𝑦(𝑡∗), 𝑧(𝑡∗) has the components: 

 

 𝑙 =
𝑑𝑥

𝑑𝑡
|
𝑡∗
, 𝑚 =

𝑑𝑦
𝑑𝑡
|
𝑡∗

, 𝑛 =
𝑑𝑥
𝑑𝑡
|
𝑡∗

   (2) 

 

That is: 

 {

𝑙∗ = 3𝑎𝑥𝑡∗
2 + 2𝑏𝑥𝑡∗ + 𝑐𝑥

𝑚∗ = 3𝑎𝑦𝑡∗
2 + 2𝑏𝑦𝑡∗ + 𝑐𝑦

𝑛∗ = 3𝑎𝑧𝑇∗
2 + 2𝑏𝑧𝑡∗ + 𝑐𝑧

    (3) 

 

We notice that the relationships have the same form 

for x, y and z. It will therefore suffice to analyze a 

function of the form: 

 𝐾(𝑡) = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑    (4) 

 

For which the derivative is: 

 𝐾 =
𝑑𝐾

𝑑𝑡
= 3𝑎𝑡2 + 2𝑏𝑡 + 𝑐    (5) 

 

For the purpose of finding the values of a, b, c and 

d. 

𝐾(𝑡) can then be replaced by 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) and a, 

b, c, and d with the corresponding coefficients. There 

are a number of ways to define cubic parametric 

curves. Of these, 3 types are analyzed: the Hermite 

form, the Bezier form and the B-Spline form. 

 

a. 3D curves in Hermite form 

For the situation in Figure 5, in order to obtain the 

Hermite form, the following conditions are imposed: 

- The ends of the curve should coincide with 

points A and B. 

- The tangents to the curve at its extreme points 

should coincide with vectors TA and TB. 

As t varies between 0 and 1, for point 𝐴, 𝑡 = 0 and 

for points 𝐵, 𝑡 = 1, these conditions will be written as 

follows: 

 
1) 

𝑥(0) = 𝑥𝐴   𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦   𝑥(1) = 𝑥𝐵
𝑦(0) = 𝑦𝐴                          𝑦(1) = 𝑦𝐵
𝑧(0) = 𝑧𝐴                          𝑧(1) = 𝑧𝐵

 

 2) 

𝑑𝑥

𝑑𝑡
|
0
= 𝑙𝐴   ș𝑖   

𝑑𝑥

𝑑𝑡
|
1
= 𝑙𝐵

𝑑𝑦

𝑑𝑡
|
0
= 𝑚𝐴

𝑑𝑦

𝑑𝑡
|
1
= 𝑚𝐵

𝑑𝑧

𝑑𝑡
|
0
= 𝑛𝐴

𝑑𝑧

𝑑𝑡
|
1
= 𝑛𝐵

   (6) 

 

Taking into account the form of cubic functions, we 

will have: 

 1) 

𝑑𝑥 = 𝑥𝐴   ș𝑖   𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑𝑥 = 𝑥𝐵
𝑑𝑦 = 𝑦𝐴𝑎𝑦 + 𝑏𝑦 + 𝑐𝑦 + 𝑑𝑦 = 𝑦𝐵
𝑑𝑧 = 𝑧𝐴𝑎𝑧 + 𝑏𝑧 + 𝑐𝑧 + 𝑑𝑧 = 𝑧𝐵

 

 2) 

𝑐𝑥 = 𝑙𝐴3𝑎𝑥 + 2𝑏𝑥 + 𝑐𝑥 = 𝑙𝐵
𝑐𝑦 = 𝑚𝐴3𝑎𝑦 + 2𝑏𝑦 + 𝑐𝑦 = 𝑚𝐵

𝑐𝑧 = 𝑛𝐴3𝑎𝑧 + 2𝑏𝑧 + 𝑐𝑧 = 𝑛𝐵

  (7) 

 

Considering the general form 𝐾(𝑡) = 𝑎𝑡
3 + 𝑏𝑡2 +

𝑐𝑡 + 𝑑, we will obtain 3 systems of the type: 

 

 {

𝑑 = 𝑃𝐴
𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑃𝐵

𝑐 = 𝑇𝐴
3𝑎 + 2𝑏 + 𝑐 = 𝑇𝐵

     (8) 

 

Where PA and PB are position components relative 

to the ends A and B, respectively, and TA and TB are the 

components of the tangents to the curve at A and B. 

Considering the above system with the unknowns 

a, b, c and d, it can be written in the form: 

 [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] = [

0
1
0
3

0
1
0
2

0
1
1
1

1
1
0
0

] × [

𝑎
𝑏
𝑐
𝑑

]   (9) 

 

Relationship found in the literature in the following 

form: 

 

 [𝐺ℎ] = [𝑀ℎ]
−1 × [𝐶]           (10) 

 

By inverting the matrix [𝑀ℎ]
−1 and multiplying the 

above relation by the calculated inverse, we obtain the 

relation for calculating the coefficients a, b, c, and d: 

 

 
[

𝑎
𝑏
𝑐
𝑑

] = [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

]

𝑜𝑟
[𝐶] = [𝑀ℎ] × [𝐺ℎ]

        (11) 

 
[𝑀ℎ] is called the Hermite matrix and [𝐺ℎ] is a 

geometric component of Hermite form. 

If we denote by [𝑇] the line vector [𝑡3, 𝑡2, 𝑡, 1], 
then: 
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𝐾(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] [

𝑎
𝑏
𝑐
𝑑

] = [𝑇] × [𝐶] =

= [𝑇] × [𝑀ℎ] × [𝐺ℎ]

        (12) 

Replacing 𝐾(𝑡) with each of the coordinates, we 

will obtain the final relations: 

𝑥(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑋𝐴
𝑋𝐵
𝑙𝐴
𝑙𝐵

]

𝑦(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑌𝐴
𝑌𝐵
𝑚𝐴
𝑚𝐵

]

𝑧(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] × [

𝑍𝐴
𝑍𝐵
𝑛𝐴
𝑛𝐵

]

(13) 

The factors TA and TB must have the same order of 

magnitude as PA and PB. 

 

b. 3D curves in the form of Bezier 

Unlike the Hermite shape, the Bezier shape has a 

control interval corresponding to the variation of the 

parameter t from 0 to 1, in which there are 4 control 

points. The first and last points specify the ends of the 

interval, while the additional points (compared to the 

Hermite shape) determine, together with the ends, the 

direction of the tangents, as shown in Figure 6. 

 
Fig. 6.3D curves in the form of Bezier 

 

The conditions that the curve must meet will be 

written: 

 

 

1.

𝑥(0) = 𝑥𝐴𝑥(1) = 𝑥𝐵
𝑦(0) = 𝑦𝐴𝑎𝑛𝑑𝑦(1) = 𝑦𝐵
𝑧(0) = 𝑧𝐴𝑧(1) = 𝑧𝐵

2.

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚𝑎𝑛𝑑�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

�̇�(0) =
𝑑𝑥

𝑑𝑡
|
0
= (𝑥𝐸 − 𝑥𝐴) × 𝑚�̇�(0) =

𝑑𝑥

𝑑𝑡
|
1
= (𝑥𝐸 − 𝑥𝐴) × 𝑚

 (14) 

 

 

Where m is called the form factor. 

Using the general form 𝐾(𝑡) = 𝑎𝑡
3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑, 

so𝐾(𝑡) =
𝑑𝐾

𝑑𝑡
= 3𝑎𝑡2 + 2𝑏𝑡 + 𝑐, these conditions lead 

to writing systems of the form: 

 

{
 

 
𝐾(0) = 𝑃𝐴
𝐾(1) = 𝑃𝐵

𝐾(0) = (𝑃𝐸 − 𝑃𝐴) × 𝑚

𝐾(1) = (𝑃𝐵 − 𝑃𝐹) × 𝑚

→

{

𝑑 = 𝑃𝐴
𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑃𝐵
𝐶 = (𝑃𝐸 − 𝑃𝐴) × 𝑚

3𝑎 + 2𝑏 + 𝑐 = (𝑃𝐵 − 𝑃𝐹) × 𝑚

          (15) 

 

The system is analogous to the one obtained in the 

Hermite form, if we make the substitutions: 

 𝑇𝐴 = (𝑃𝐸 − 𝑃𝐴) × 𝑚, 𝑇𝐵 = (𝑃𝐵 − 𝑃𝐹) × 𝑚   (16) 

 

The transition from the geometric component of 

Bezier shape to the geometric component of Hermite 

shape is therefore done with the relationship: 

 {

𝑃𝐴 = 𝑃𝐴
𝑃𝐵 = 𝑃𝐵

𝑇𝐴 = (𝑃𝐸 − 𝑃𝐴) × 𝑚

𝑇𝐵 = (𝑃𝐵 − 𝑃𝐹) × 𝑚

   𝑜𝑟   [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] =

[

1
0
−𝑚
0

0
0
𝑚
0

0
0
0
−𝑚

0
1
0
𝑚

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

]          (17) 

 

For the normal Bezier shape, we work with 𝑚 = 3, 

so: 

 [

𝑃𝐴
𝑃𝐵
𝑇𝐴
𝑇𝐵

] = [

1
0
−3
0

0
0
3
0

0
0
0
−3

0
1
0
3

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

]    𝑜𝑟   [𝐺ℎ] =

[𝑀ℎ𝑏] × [𝐺𝑏]             (18) 

 

Where [𝑀ℎ𝑏] is the transition matrix from Hermite 

form to Bezier form. 

We can write: 

 [𝐶] = [𝑀ℎ] × [𝐺ℎ] = [𝑀ℎ] × [𝑀ℎ𝑏] × [𝐺𝑏]  (19) 

Respectively: 

𝐾(𝑡) = [𝑇] × [𝐶] = [𝑇] × [𝑀ℎ] × [𝑀ℎ𝑏] × [𝐺𝑏]   (20) 

 

We denote the product [𝑀ℎ] × [𝑀ℎ𝑏] by [𝑀𝑏]. 
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This matrix is called the Bezier matrix: 

[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

] × [

1
0
−3
0

0
0
3
0

0
0
0
−3

0
1
0
3

] =

= [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

]

𝑆𝑜 [𝑀𝑏] = [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

]

        (21) 

The general form of the Bezier calculation 

relationship for the value of a coordinate is: 
𝐾(𝑡) = [𝑇] × [𝑀𝐵] × [𝐺𝑏] =

= [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑃𝐴
𝑃𝐸
𝑃𝐹
𝑃𝐵

]
        (22) 

 

 
Fig. 7. Bezier curve 

 

By substitution, we obtain the relations: 

𝑥(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑥𝐴
𝑥𝐸
𝑥𝐹
𝑥𝐵

]

𝑦(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑦𝐴
𝑦𝐸
𝑦𝐹
𝑦𝐵

]

𝑧(𝑡) = [𝑡3𝑡2 𝑡 1] × [

−1
3
−3
1

3
−6
3
0

−3
3
0
0

1
0
0
0

] × [

𝑧𝐴
𝑧𝐸
𝑧𝐹
𝑧𝐵

]

 (23) 

For several adjacent Bezier curve segments to form 

a continuous curve, it is necessary that at the junction 

point, the tangents be parallel. Therefore, the points F1, 

B1, and E2 (in Figure 8) must be collinear. 

For the representation on the screen, the procedure 

is the same as for Hermite curves, but the coordinates 

of 4 points are used for each control interval. 

 

c. 3D curves in the form of B-Spline 

B-Spline curves use a sequence of n control points 

𝑃1, 𝑃2, … , 𝑃𝑛 through which, in the general case, they 

do not pass. The calculations of the coordinates of the 

intermediate points are made using a formula of the 

well-known form: 

 𝐾𝑖,𝑖+1(𝑡) = [𝑇] × [𝑀𝑆] × [𝐺𝑆]
𝑖,𝑖+1        (24) 

 

The indices 𝑖, 𝑖 + 1 show us that the formula is used 

for approximation between the control points 𝑃𝑖  and 

𝑃𝑖+1 with 𝑖 ∈ [2, 𝑛 − 2]. 
[𝑀𝑆] is the Spline matrix and has the form: 

 [𝑀𝑆] =
1

6
[

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

]         (25) 

[𝐺]𝑖,   𝑖+1 is the geometric component of the B-

Spline shape used between points 𝑃𝑖  and 𝑃𝑖+1. To 

determine the shape of the curve between 𝑃𝑖  and 𝑃𝑖+1, 

the B-Spline shape uses the coordinates of points 𝑃𝑖−1, 

𝑃𝑖 , 𝑃𝑖+1 and 𝑃𝑖+2. 

 [𝐺𝑆]
𝑖,𝑖+1 = [

𝑃𝑖−1
𝑃𝑖
𝑃𝑖+1
𝑃𝑖+2

]           (26) 

The formulas for calculating the coordinates are: 

{
 
 
 
 
 

 
 
 
 
 
𝑥(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑥𝑖−1
𝑥𝑖
𝑥𝑖+1
𝑥𝑖+2

] ×
1

6

𝑦(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑦𝑖−1
𝑦𝑖
𝑦𝑖+1
𝑦𝑖+2

] ×
1

6

𝑧(𝑡) = [𝑡3, 𝑡2, 𝑡, 1] × [

−1
3
−3
1

3
−6
0
4

−3
3
3
1

1
0
0
0

] × [

𝑧𝑖−1
𝑧𝑖
𝑧𝑖+1
𝑧𝑖+2

] ×
1

6

 

               (27) 

 

3D bicubic surfaces – Using 2 families of 3D cubic 

curves, we can define a curved surface in space, as seen 

in Figure 8. [7] 

 
Fig. 8. 3D bicubic surfaces 

 

The family of 3D Cubic curves C can be obtained 

by introducing into the equation: 𝑥 = 𝑥(𝑡), 𝑦 =
𝑦(𝑡), and 𝑧 = 𝑧(𝑡), another parameter s that varies 

between 0 and 1. 

The curves in the C family are obtained for various 

values of s. 

Analogously, the curves in the D family are 

obtained by introducing into the equations: 𝑥 = 𝑥(𝑠),
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𝑦 = 𝑦(𝑠), and 𝑧 = 𝑧(𝑠), another parameter t varying 

between 0 and 1. 

In order to define a surface using the two families 

of curves, there must be a common form of their 

equations written with 2 parameters: 𝑥 = 𝑥(𝑠, 𝑡), 𝑦 =
𝑦(𝑠, 𝑡), and 𝑧 = 𝑧(𝑠, 𝑡). These relations represent the 

equations of a 3D curved surface, called a bicubic 

surface (bi = has 2 parameters; cubic = each of the 

surface parameters appears to the maximum power of 

3). 

The accuracy of the surface rendering depends on 

the choice of step sizes 𝑝𝑠 and 𝑝𝑡. Usually, 𝑝𝑠 = 𝑝𝑡 is 

used, and the general form of the expression of a 

coordinate function of the parameters 𝑠 and 𝑡 is: 

𝐾(𝑠, 𝑡) = 𝑎11𝑠
3𝑡3 + 𝑎12𝑠

3𝑡2 + 𝑎13𝑠
3𝑡 + 𝑎14𝑠

3 + 

 +𝑎21𝑠
2𝑡3 + 𝑎22𝑠

2𝑡2 + 𝑎23𝑠
2𝑡 + 𝑎24𝑠

2 + 

 +𝑎31𝑠𝑡
3 + 𝑎32𝑠𝑡

2 + 𝑎33𝑠𝑡 + 𝑎34𝑠 + 

 +𝑎41𝑡
3 + 𝑎42𝑡

2 + 𝑎43𝑡 + 𝑎44         (28) 

 

If we note: 

[𝐶] = [

𝑎11
𝑎21
𝑎31
𝑎41

𝑎12
𝑎22
𝑎32
𝑎42

𝑎13
𝑎23
𝑎33
𝑎43

𝑎14
𝑎24
𝑎34
𝑎44

] , [𝑆] = [𝑠3𝑠2 𝑠 1]  (29) 

 

and [𝑇] = [𝑡3 × 𝑡2 × 𝑡 × 1], the above relationship 

becomes: 𝐾(𝑠,   𝑡) = [𝑆] × [𝐶] × [𝑇]𝑇 . As with 3D 

curves, 3D curved surfaces can be defined in the 

Hermite, Bezier, and B-Spline forms. 

 

a) Bicubic surfaces in Hermite form 

 

A Hermite bicubic surface is defined by 4 points in 

space, usually denoted 𝑃00, 𝑃01, 𝑃10, and 𝑃11, 

corresponding to the extreme values (0 and 1) for s and 

t, as well as by 3 tangents to the surface at each of these 

points. 

The situation is presented in Figure 9. 

 
Fig. 9. Bicubic surfaces in Hermite form 

Each tangent vector has components determined by 

the 1st and 2nd order derivatives of the functions 𝑥 =
𝑥(𝑠, 𝑡), 𝑦 = 𝑦(𝑠, 𝑡), 𝑧 = 𝑧(𝑠, 𝑡). 

 

 

𝑃00(𝑥(0, 0), 𝑦(0, 0), 𝑧(0, 0))

𝑃10(𝑥(1, 0), 𝑦(1, 0), 𝑧(1, 0))

𝑃01(𝑥(0, 1), 𝑦(0, 1), 𝑧(0, 1))

𝑃11(𝑥(1, 1), 𝑦(1, 1), 𝑧(1, 1))

𝑇𝑠𝑖𝑗 = (
𝑑𝑥

𝑑𝑠
|
𝑖,𝑗
,
𝑑𝑦

𝑑𝑠
|
𝑖,𝑗
,
𝑑𝑧

𝑑𝑠
|
𝑖,𝑗
)

𝑇𝑡𝑖𝑗 = (
𝑑𝑥

𝑑𝑡
|
𝑖,𝑗
,
𝑑𝑦

𝑑𝑡
|
𝑖,𝑗
,
𝑑𝑧

𝑑𝑡
|
𝑖,𝑗
)

𝑇𝑠𝑡𝑖𝑗 = (
𝑑2𝑥

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
,
𝑑2𝑦

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
,
𝑑2𝑧

𝑑𝑠 𝑑𝑡
|
𝑖,𝑗
)

        (30) 

 

The conditions required for a Hermite surface are: 

1) Let it pass through the 4 points. 

2) Let it have 3 tangents given at each of the 

4 points. 

That is: 

1. {

𝑥(0, 0) = 𝑥00
𝑦(0, 0) = 𝑦00
𝑧(0, 0) = 𝑧00

{

𝑥(1, 0) = 𝑥10
𝑦(1, 0) = 𝑦10
𝑧(1, 0) = 𝑧10

{

𝑥(0, 1) = 𝑥01
𝑦(0, 1) = 𝑦01
𝑧(0, 1) = 𝑧01

𝑎𝑛𝑑 {

𝑥(1, 1) = 𝑥11
𝑦(1, 1) = 𝑦11
𝑧(1, 1) = 𝑧11

2.

{
  
 

  
 
𝑑𝑥

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑥

𝑑𝑠
)
𝑖,𝑗

𝑑𝑦

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑦

𝑑𝑠
)
𝑖,𝑗

𝑑𝑧

𝑑𝑠
|
𝑖,𝑗
= (

𝑑𝑧

𝑑𝑠
)
𝑖,𝑗

 𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1},

{
  
 

  
 
𝑑𝑥

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑥

𝑑𝑡
)
𝑖,𝑗

𝑑𝑦

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑦

𝑑𝑡
)
𝑖,𝑗

𝑑𝑧

𝑑𝑡
|
𝑖,𝑗
= (

𝑑𝑧

𝑑𝑡
)
𝑖,𝑗

𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1}.

{
 
 
 

 
 
 
𝑑2𝑥

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑥

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑑2𝑦

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑦

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑑2𝑧

𝑑𝑠𝑑𝑡
|
𝑖,𝑗

= (
𝑑2𝑧

𝑑𝑠𝑑𝑡
)
𝑖,𝑗

𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 1}.

 

       (31) 

Using the general form of the relations for 

determining the coordinates of points on a 3D bicubic 

surface, we obtain: 

 

{
 

 
𝐾(0, 0) = 𝑃00
𝐾(1, 0) = 𝑃10
𝐾(0, 1) = 𝑃01
𝐾(1, 1) = 𝑃11

,

{
 
 
 

 
 
 
𝑑𝐾

𝑑𝑠
|
0,0
= 𝑇𝑠 00

𝑑𝐾

𝑑𝑠
|
1,0
= 𝑇𝑠 10

𝑑𝐾

𝑑𝑠
|
0,1
= 𝑇𝑠 01

𝑑𝐾

𝑑𝑠
|
1,1
= 𝑇𝑠 11

,

{
 
 
 

 
 
 
𝑑𝐾

𝑑𝑡
|
0,0
= 𝑇𝑡 00

𝑑𝐾

𝑑𝑡
|
1,0
= 𝑇𝑡 10

𝑑𝐾

𝑑𝑡
|
0,1
= 𝑇𝑡 01

𝑑𝐾

𝑑𝑡
|
1,1
= 𝑇𝑡 11
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 𝑎𝑛𝑑 

{
 
 
 

 
 
 
𝑑2𝐾

𝑑𝑠𝑑𝑡
|
0,0
= 𝑇𝑠𝑡 00

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
1,0
= 𝑇𝑠𝑡 10

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
0,1
= 𝑇𝑠𝑡 01

𝑑2𝐾

𝑑𝑠𝑑𝑡
|
1,1
= 𝑇𝑠𝑡 11

          (32) 

 

Here 𝑃00, 𝑃10, 𝑃01, 𝑎𝑛𝑑 𝑃11 are position constants, 

and 𝑇𝑠𝑖𝑗 , 𝑇𝑡𝑖𝑗 , 𝑎𝑛𝑑 𝑇𝑠𝑡𝑖𝑗  are constants determined by 

tangents. 

Taking into account that: 

 𝐾(𝑠, 𝑡) = 𝑎11𝑠
3𝑡3 + 𝑎12𝑠

3𝑡2 + 𝑎13𝑠
3𝑡 +

𝑎14𝑠
3 + 

 +𝑎21𝑠
2𝑡3 + 𝑎22𝑠

2𝑡2 + 𝑎23𝑠
2𝑡 + 𝑎24𝑠

2 + 

 +𝑎31𝑠𝑡
3 + 𝑎32𝑠𝑡

2 + 𝑎33𝑠𝑡 + 𝑎34𝑠 + 

 +𝑎41𝑡
3 + 𝑎42𝑡

2 + 𝑎43𝑡 + 𝑎44 = [𝑆] × [𝐶] ×
[𝑇]𝑇               (33) 

 

We have: 

 
𝑑𝐾(𝑠, 𝑡)

𝑑𝑠
= 3𝑎11𝑠

2𝑡3 + 3𝑎12𝑠
2𝑡2 + 3𝑎13𝑠

2𝑡 + 3𝑎14𝑠
2 +

+2𝑎21𝑠𝑡
3 + 2𝑎22𝑠𝑡

2 + 2𝑎23𝑠𝑡 + 2𝑎24𝑠 +

+𝑎31𝑡
3 + 𝑎32𝑡

2 + 𝑎33𝑡 + 𝑎34
𝑑𝐾(𝑠, 𝑡)

𝑑𝑡
= 3𝑎11𝑠

3𝑡2 + 2𝑎12𝑠
3𝑡 + 𝑎13𝑠

3 +

+3𝑎21𝑠
2𝑡2 + 2𝑎22𝑠

2𝑡 + 𝑎23𝑠
2 +

+3𝑎31𝑠𝑡
2 + 2𝑎32𝑠𝑡 + 𝑎33𝑠 + 3𝑎41𝑡

2 + 2𝑎42𝑡 + 𝑎43
𝑑𝐾(𝑠, 𝑡)

𝑑𝑠𝑑𝑡
= 9𝑎11𝑠

2𝑡2 + 6𝑎12𝑠
2𝑡 + 3𝑎13𝑠

2 +

+6𝑎21𝑠𝑡
2 + 4𝑎22𝑠𝑡 + 2𝑎23𝑠 +

+3𝑎31𝑡
2 + 2𝑎32𝑡 + 𝑎33

 

       (34) 

 

Proceeding further, as for 3D curves in Hermite 

form, we will obtain a relationship of the form: 

 𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝐻] × [𝑇]
𝑇         (35) 

 

It can be demonstrated that: 

 [𝑀𝐻] = [𝑀ℎ] × [𝑄ℎ] × [𝑀𝐻]
𝑇         (36) 

 

Where [𝑀ℎ] is the Hermite matrix, and [𝑄ℎ] is a 

Hermite geometry matrix that has the form: 

 [𝑄ℎ] = [

𝑃00
𝑃10
𝑇𝑠00
𝑇𝑠10

𝑃01
𝑃11
𝑇𝑠01
𝑇𝑠11

𝑇𝑡00
𝑇𝑡10
𝑇𝑠𝑡00
𝑇𝑠𝑡10

𝑇𝑡01
𝑇𝑡11
𝑇𝑠𝑡01
𝑇𝑠𝑡11

]        (37) 

 

The final calculation relationships will be: 

𝑥(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[
 
 
 
 
 
 
 
 
𝑥00
𝑥10
𝑑𝑥

𝑑𝑠00
𝑑𝑥

𝑑𝑠10

𝑥01
𝑥11
𝑑𝑥

𝑑𝑠01
𝑑𝑥

𝑑𝑠11

𝑑𝑥

𝑑𝑡00
𝑑𝑥

𝑑𝑡10
𝑑2𝑥

𝑑𝑠 𝑑𝑡00
𝑑2𝑥

𝑑𝑠 𝑑𝑡10

𝑑𝑥

𝑑𝑡01
𝑑𝑥

𝑑𝑡11
𝑑2𝑥

𝑑𝑠 𝑑𝑡01
𝑑2𝑥

𝑑𝑠 𝑑𝑡11]
 
 
 
 
 
 
 
 

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

𝑦(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[
 
 
 
 
 
 
 
 
𝑦00
𝑦10
𝑑𝑦

𝑑𝑠00
𝑑𝑦

𝑑𝑠10

𝑦01
𝑦11
𝑑𝑦

𝑑𝑠01
𝑑𝑦

𝑑𝑠11

𝑑𝑦

𝑑𝑡00
𝑑𝑦

𝑑𝑡10
𝑑2𝑦

𝑑𝑠 𝑑𝑡00
𝑑2𝑦

𝑑𝑠 𝑑𝑡10

𝑑𝑦

𝑑𝑡01
𝑑𝑦

𝑑𝑡11
𝑑2𝑦

𝑑𝑠 𝑑𝑡01
𝑑2𝑦

𝑑𝑠 𝑑𝑡11]
 
 
 
 
 
 
 
 

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

𝑧(𝑠, 𝑡) = [𝑆] × [𝑀ℎ] ×

×

[
 
 
 
 
 
 
 
 
𝑧00
𝑧10
𝑑𝑧

𝑑𝑠00
𝑑𝑧

𝑑𝑠10

𝑧01
𝑧11
𝑑𝑧

𝑑𝑠01
𝑑𝑧

𝑑𝑠11

𝑑𝑧

𝑑𝑡00
𝑑𝑧

𝑑𝑡10
𝑑2𝑧

𝑑𝑠 𝑑𝑡00
𝑑2𝑧

𝑑𝑠 𝑑𝑡10

𝑑𝑧

𝑑𝑡01
𝑑𝑧

𝑑𝑡11
𝑑2𝑧

𝑑𝑠 𝑑𝑡01
𝑑2𝑧

𝑑𝑠 𝑑𝑡11]
 
 
 
 
 
 
 
 

× [𝑀ℎ]
𝑇 × [𝑇]𝑇

 

       (38) 

 

The continuity conditions at the junction of 2 

Hermite surfaces are relatively simple: the ends of the 

boundary curve must coincide, and the tangents to the 

surfaces at these ends must be proportional. 

 

b) Bicubic surfaces in Bezier form 

 

As with 3D curves in the Bezier form, to define a 

Bezier surface, we use the 4 control points 

corresponding to the values 
(0, 0), (0, 1), (1, 0), and (1, 1) of the s and t 

parameters. Additionally, 12 other control points are 

used through which the tangents to the surface are 

specified (Figure 10). 

 
Fig. 10. Bicubic surfaces in Bezier form 
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The geometry of a Bezier surface is therefore 

characterized by the coordinates of 16 control points. 

The Bezier geometry matrix (𝑄𝑏) will have the 

form: 

 [𝑄𝑏] = [

𝑃00
𝑃𝑡00
𝑃𝑡01
𝑃01

𝑃𝑠00
𝑃𝑠𝑡00
𝑃𝑠𝑡01
𝑃𝑠01

𝑃𝑠10
𝑃𝑠𝑡10
𝑃𝑠𝑡11
𝑃𝑠11

𝑃10
𝑃𝑡10
𝑃𝑡11
𝑃11

]        (39) 

 

The general form of the relationship used to 

determine the coordinates corresponding to the pair of 

parameters (𝑠, 𝑡) in the case of Bezier surfaces is: 

 

𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [𝑄𝑏] × [𝑀𝑏]
𝑇 × [𝑇]𝑇        (40) 

 

Substituting, we obtain the calculation relations: 

𝑥(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑥00
𝑥𝑡00
𝑥𝑡01
𝑥01

𝑥𝑠00
𝑥𝑠𝑡00
𝑥𝑠𝑡01
𝑥𝑠01

𝑥𝑠10
𝑥𝑠𝑡10
𝑥𝑠𝑡11
𝑥𝑠11

𝑥10
𝑥𝑡10
𝑥𝑡11
𝑥11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

𝑦(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑦00
𝑦𝑡00
𝑦𝑡01
𝑦01

𝑦𝑠00
𝑦𝑠𝑡00
𝑦𝑠𝑡01
𝑦𝑠01

𝑦𝑠10
𝑦𝑠𝑡10
𝑦𝑠𝑡11
𝑦𝑠11

𝑦10
𝑦𝑡10
𝑦𝑡11
𝑦11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

𝑧(𝑠, 𝑡) = [𝑆] × [𝑀𝑏] × [

𝑧00
𝑧𝑡00
𝑧𝑡01
𝑧01

𝑧𝑠00
𝑧𝑠𝑡00
𝑧𝑠𝑡01
𝑧𝑠01

𝑧𝑠10
𝑧𝑠𝑡10
𝑧𝑠𝑡11
𝑧𝑠11

𝑧10
𝑧𝑡10
𝑧𝑡11
𝑧11

] ×

× [𝑀𝑏]
𝑇 × [𝑇]𝑇

 

       (41) 

Bezier surfaces pass through the four corner points 
(𝑃00, 𝑃01, 𝑃10, and 𝑃11), and generally do not pass 

through the other control points. 

The problem of continuity between 2 connected 

Bezier surfaces along an edge is solved by ensuring 

collinearity for 4 pairs of 3 points. 

The situation is shown in Figure 11. 

 
Fig. 11. Continuity problem of 2 connected Bezier 

surfaces 

 

To ensure the continuity of the surfaces 𝑆1 and 𝑆2 

along the curve (𝐶), we must choose the control points 

so that the corresponding ones on the curve (𝐶) (for 

both surfaces) coincide, and the triplets of points 

𝑃1𝑃2𝑃3, 𝑃4𝑃5𝑃6, 𝑃7𝑃8𝑃9, and 𝑃10𝑃11𝑃12 are collinear. 

 

 

c) Bicubic surfaces in B-Spline form 

 

A bicubic surface in the form of a B-Spline is 

defined by 16 control points, by analogy with 3D B-

Spline curves. The calculation relations for the 

coordinates corresponding to the parameter pair (s, t) 

have the general form: 

 𝐾(𝑠, 𝑡) = [𝑆] × [𝑀𝑠] × [𝑄𝑠𝑖,𝑗+1;𝑖+1,𝑗+1
𝑖,𝑖;𝑖+1,𝑗 ] ×

[𝑀𝑠]
𝑇 × [𝑇𝑇]             (42) 

 

Here, the indices specify that the intermediate 

points are calculated within the perimeter delimited by 

the control points: 

𝑃𝑖𝑗 , 𝑃𝑖+1,   𝑗, 𝑃𝑖,   𝑗+1, 𝑃𝑖+1,   𝑗+1, where 𝑖, 𝑗 ∈ [2, 𝑛 −

2]. This assumes that we use an 𝑛 × 𝑛 point grid to 

describe the entire surface. 

The situation is illustrated in Figure 12. 

The 16 points that determine the matrix 

[𝑄𝑠𝑖,𝑗+1   𝑖+1,𝑗+1
𝑖,𝑗         𝑖+1,𝑗 ] are: 

 

 

[
 
 
 
𝑃𝑖−1,𝑗−1
𝑃𝑖,𝑗−1
𝑃𝑖+1,𝑗−1
𝑃𝑖+2,𝑗−1

𝑃𝑖−1,𝑗
𝑃𝑖,𝑗
𝑃𝑖+1,𝑗
𝑃𝑖+2,𝑗

𝑃𝑖−1,𝑗+1
𝑃𝑖,𝑗+1
𝑃𝑖+1,𝑗+1
𝑃𝑖+2,𝑗+1

𝑃𝑖−1,𝑗+2
𝑃𝑖,𝑗+2
𝑃𝑖+1,𝑗+2
𝑃𝑖+2,𝑗+2]

 
 
 

        (43) 

 

A B-Spline surface does not generally pass through 

the given control points. 

 

 
Fig. 12. Bicubic surfaces in B-Spline form 

 

3. CONCLUSIONS 

The numerical representation of objects, particularly 

that of 3D bodies, provides a powerful tool for 

modeling, analyzing, and visualizing complex 

structures. Through techniques such as discretization 

and computational geometry, 3D bodies can be 

accurately represented in digital form, enabling 

advancements in fields such as engineering [8-12], 

computer graphics, and scientific simulations. This 

approach facilitates precise design, optimization, and 
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manipulation of objects, contributing to innovation 

across multiple disciplines. 

To elaborate further, this process involves 

translating physical or conceptual structures into 

mathematical models that can be processed, analyzed, 

and visualized by computers. This process is central to 

various industries, including manufacturing, 

architecture, animation, and virtual reality. 

The ability to numerically represent 3D bodies 

opens up significant possibilities. For instance, in 

engineering and product design, this representation 

allows for precise simulations of how objects will 

behave under different conditions, such as stress, heat, 

or motion, before physical prototypes are created. This 

reduces costs, accelerates the development process, 

and improves product quality. 

Overall, the representation of 3D bodies through 

numerical methods not only enhances the accuracy and 

efficiency of design and analysis, but also drives 

innovation in both practical applications and creative 

fields. 
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