Crack Propagation in Flexural Testing of Additive Manufactured Acrylonitrile Butadiene Styrene
Abstract
Fused Deposition Modelling (FDM) is one of the most important Additive Manufacturing (AM) technologies. This is a technology suitable for various engineering applications and currently used with many types of thermoplastic materials including Acrylonitrile Butadiene Styrene (ABS). AM-FDM printed ABS possesses an inherent capacity for property modifications as a function of printing parameters. The main goal of the present ongoing research project is to estimate the strength of the AM-FDM printed ABS for varying printing process parameters. In the present study, the mechanical and structural characterizations of AM-FDM ABS were evaluated by light microscopy and mechanical testing. Three-point bend flexural test results revealed the mechanical properties as well as the fracture behaviour according to the dimensions and printing strategies of the build-on specimens. An innovative transmitted-light microscopy experimental method was developed and utilized to investigate the crack propagation behaviour under bending.
Downloads
Papers accepted for publication become the copyrighted property of the Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment and Technology. No part of the publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, except in limited quantities for the non-commercial purposes of scientific or educational advancement, without permission in writing from the Editorial Board.