Optimization of the Cooling of a Thermoplastic Injection Mold
Abstract
In injection molding processes for thermoplastic parts, the polymer solidification phase in the molding cavity has a strong influence on the quality of the shaped parts and also on the process cycle time. Reducing cycle time is one of the major concerns for plastic injection industries. As cooling phase presents the most critical phase to get quality and cycle time of the part, the application of additive manufacturing (AM) technologies has been overcoming the limitations of traditional cooling system design. AM enables the construction of conformal cooling channels for higher cooling uniformity due to its almost unlimited freedom of design that can fulfil the desired functions in injection molding process equipment. The analysis of the heat transfer during the phase of cooling allows the investigation of the optimal positioning of the cold sources and their intensities. In this paper, a systematic approach is used to replace conventional channels in an injection molding tool with conformal cooling channels. A simulation is used to develop a numerical model that describes the heat transfer and predicts the cycle time of both the optimal and conventional designs. Finally, a numerical comparison is made between traditional and conformal cooling to demonstrate the beneficial effect on reducing the manufacturing cycle and enhancing part quality.
Downloads
Papers accepted for publication become the copyrighted property of the Annals of "Dunarea de Jos" University of Galati, Fascicle XII, Welding Equipment and Technology. No part of the publication may be reproduced or transmitted in any form, or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, except in limited quantities for the non-commercial purposes of scientific or educational advancement, without permission in writing from the Editorial Board.