Resistance and powering prediction using AutoPower module of AutoShip software case study

oceanographic research robot

Keywords: AutoShip, AutoPower, total ship resistance, effective power, oceanographic research robot, Mono hull, Catamaran hull.

Abstract

In the preliminary design stage of displacement ships, assessing total resistance and propulsion power demand is critical, since variations in hull form parameters significantly influence propulsion efficiency and engine sizing. In this study, the AutoPower module of the AutoShip software suite is used for a monohull vessel and a catamaran with a symmetric hull, both having similar main dimensions. Resistance and effective power were computed
for a speed range between 0 and 22 knots using several empirical methods implemented in AutoPower, including Andersen/Guldhammer, Holtrop, van Oortmerssen,
Digernes/Cheng, and Fung. The results highlight significant variations between the methods, with effective power predictions at the service speed of 18 knots ranging from 3.5 kW (Holtrop) to over 20 kW (Digernes/Cheng). The originality of the paper lies in emphasizing both the usefulness and the limitations of empirical formulations in the preliminary design of ships. The study concludes that, although AutoPower provides a fast and practical framework for estimating power requirements, the choice of prediction method must be correlated with the ship type and hull characteristics, while validation through model tests in hydrodynamic towing tanks or CFD simulations remains essential to ensure reliability.

Downloads

Download data is not yet available.

References

[1] Obreja D., Manolache L., Popescu G., "Bazele proiectării preliminare a navei", Ed. Academica, Galați, 2023, ISBN 973-8316-66-9
[2] Maier V., "Mecanica și construcția navei. Vol. 2. Dinamica navei", Ed. Tehnică, București, 1987
[3] Manea M. - G., "Teoria si constructia navei. Note de curs", Editura Zigotto, Galați, 2023, ISBN: 978-606-6696-418-6
[4] Manea M. - G., Ivanov P., Mironiuk W., Aloia G., "Naval architecture for marine engineers", Ed. Academiei Navale „Mircea cel Bătrân”, Constanța,
2025, ISBN 978-606-642-310-6 [5] Tupper, E. C., "Introduction to Naval Arhitecture", fourth edition 2004, ISBN 0 7506 6554 8
[6] *** https://www.britannica.com/technology/naval-architecture/Resistance-andpropulsion
[7] *** https://www.usna.edu/NAOE/_files/documents/Courses/EN400/02.07_Chapter_7.pdf
[8] Yang, Y., Zhang, Z., Zhao, J., Zhang, B., Zhang, L., Hu, Q., & Sun, J. (2024). "Research on Ship Resistance Prediction Using Machine Learning with Different Samples", Journal of Marine Science and Engineering, 12(4), 556. https://doi.org/10.3390/jmse12040556
[9] Niloy RS, Islam MS, Jahin A (2024), December Md Rahat Mozumder, & Rakin Ahmed. "MachineLearning-Based Resistance Prediction of AMECRC Hull", Proceedings of the 24th Australasian FluidMechanics Conference (AFMC), Canberra, Australia, https://doi.org/10.5281/zenodo.14213316
[10] Zang C., Vergara D., Zhang M., Nikolaos T., Mao W., "A machine learning method to evaluate head sea induced weather impact on ship fuel consumption", Energy 328 (2025) 136533 https://doi.org/10.1016/j.energy.2025.136533
[11] Amini-Afshar, M., Mittendorf, M., & Bingham, H. B. (2025). "Machine Learning for Computation of Wave Added"
[12] Zhu S., Lv S., Chen K., Fang W., Cao L, "Research progress on intelligent optimization techniques for energy-efficient design of ship hull forms",
https://doi.org/10.48550/arXiv.2403.05832
[13] Loft M., Schwarz H., Rung T., "Data-driven pressure field prediction for ships in regular sea states", https://doi.org/10.48550/arXiv.2505.06014
[14] Papandreou C., Mathioudakis M., Stouraitis T., Iatropoulos P., Nikitakis A., Paschalakis S., Kyriakopoulos K., "Interpretable Data-Driven Ship Dynamics Model: Enhancing PhysicsBased Motion Prediction with Parameter Optimization", https://doi.org/10.48550/arXiv.2502.18696
[15] Holtrop, J., & Mennen, G. G. J. (1982). An "Approximate Power Prediction Method", International Shipbuilding Progress, 29(335), 166–170. https://doi.org/10.3233/ISP-1982-2933501
[16] Molland A. F., Turnock S. R., Hudson, D. A., "Resistance Design Data. In Ship Resistance and Propulsion: Practical Estimation of Propulsive Power", (pp. 188–245).
Cambridge: Cambridge University Press.
[17] Fung Y. H., Leibman J., (1995). Prediction of "Resistance and Propulsion Power of Ships Using an Empirical Approach. David Taylor Model Basin Report".,
https://www.highlightcomputer.com/NArch%20509%20Ship%20Propulsion.pdf
[18] Kjetil L., 1990, "Utproving av utvalgte formler for beregning av motstand i stille vann", The Norwegian Institute of Fishery Technology Research Report (FTFI)
[19] Muhammad A. H., Paroka D., Rahman S., Syari-fuddin, 2015. "Hydrodynamic Characteri-stics of 30 GT Fishing Ship Hull Form in Sulawesi Waters", International Journal of Engineering and Science Applications, 2 (2):153-161.
[20] Jin P., Su B. and Tan Z., 1980, "A Parametric Study on High-Speed Round Bilge Displacement Hulls", High-Speed Surface Craft, Vol. 19
[21] SNAME, "Resistance and Powering Prediction for Transom Stern Hull Forms During Early-Stage Ship Design", Fung S.C., SNAME Transactions, Vol. 99, 1991
[22] Holtrop J., Mennen G.G.J., "A Statistical Power Prediction Method", Int. Shipbuilding Progress, Vol. 25, 1978
[23] Holtrop J., Mennen G.G.J., "An Approximate Power Prediction Method", Int. Shipbuilding Progress, Vol. 29, 1982
[24] Holtrop J., "A Statistical Re-analysis of Resistance and Propulsion Data", Int. Shipbuilding Progress, Vol. 31, 1984
[25] "Design Tool for High-Speed Slender Catamarans", Werenskold, Published letter from Marintek, Ocean Laboratories in Trondheim Norway
Published
2025-12-13
How to Cite
1.
Buzilă E, Șerban S, Pintilie A, Manea M. Resistance and powering prediction using AutoPower module of AutoShip software case study. Annals of ”Dunarea de Jos” University of Galati. Fascicle XI Shipbuilding [Internet]. 13Dec.2025 [cited 15Dec.2025];48:83-4. Available from: https://gup.ugal.ro/ugaljournals/index.php/fanship/article/view/9464
Section
Articles