Offshore platform adaptation to climate change through technological optimization and advanced monitoring

Literature review

Keywords: offshore platforms, structural optimization, risk management, oil infrastructure.

Abstract

Climate change is one of the major challenges of the 21st century for the off shore oil industry, generating fundamental changes in operating conditions and requiring complex technological adaptations. This paper investigates the vulnerability of offshore oil infrastructures to the effects of climate change, analysing the impact of temperature increases, sea level changes and the intensification of extreme weather events on offshore platforms. By analysing the specialized literature and evaluating the data, the study identifies the main risks to which these infrastructures are exposed and proposes integrated optimization and adaptation strategies. The results highlight the need to implement advanced structural monitoring technologies, develop multi-criteria optimization methods and integrate renewable energy solutions to increase the resilience of offshore platforms. The analysis shows that infrastructure in Arctic regions is exposed to risks caused by permafrost instability, and many major European terminals are vulnerable to sea level rise. Our paper proposes a unified conceptual model that integrates structural optimization technologies, continuous monitoring solutions, and modern risk management approaches to maintain the safety and sustainability of offshore operations under conditions of intensifying climate change.

Downloads

Download data is not yet available.

References

[1] IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Chapter 1; Cambridge University Press: Cambridge, UK, 2019. IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Chapter 1; Cambridge University Press: Cambridge, UK, 2019.
[2] Skafte, A.; Tygesen, U.T.; Brincker, R. Expansion of mode shapes and responses on the offshore platform Struct.2014, 4, 35–41.
[3] Paskal, C. The Vulnerability of Energy Infrastructure to Environmental Change; Chatham House: London, UK, 2009.
[4] Planete Energies. Offshore Oil and Gas Production. Available https://www.planete energies.com/en/medias/close/
online: offshore-oil-and gas-production (accessed on 5 December 2021).
[5] Burkett, V. Global climate change implications for coastal and offshore oil and gas development. Energy Policy 2011, 39, 7719–7725. [CrossRef].
[6] Sun, X.; Ren, G.; Xu, W.; Li, Q.; Ren, Y. Global land-surface air temperature change based on the new CMA GLSAT data set. Sci. Bull. 2017, 62, 236–238. [CrossRef].
[7] Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land in Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [CrossRef].
[8] Hosseini, S.; Zolghadr, A. Optimization of an offshore jacket-type structure using metaheuristic algorithms. Iran Univ. Sci. Technol. 2017, 7, 565–577.
[9] Zhang, X.; Song, X.; Qiu, W.; Yuan, Z.; You, Y.; Deng, N. Multi-objective optimization of Tension Leg Platform using evolutionary algorithm based on surrogate model. Ocean Eng. 2018, 148, 612–631.
[10] Abou El-Makarem, M.; Elshafey, A.A.; Abdel-Salam, A.; Mokhtar, B.I.T. Topology Optimization of Fixed Offshore Platform under Earthquake Loading in Gulf of Suez. IOSR J. Mech. Civ. Eng. 2019, 16, 58–71.
[11] Tian, X.; Wang, Q.; Liu, G.; Liu, Y.; Xie, Y.; Deng, W. Topology optimization design for offshore platform jacket structure. Appl. Ocean Res. 2019, 84, 38–50.
[12] Deng, W.; Tian, X.; Han, X.; Liu, G.; Xie, Y.; Li, Z. Topology optimization of jack-up offshore platform leg structure. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2021, 235, 165–175.
[13] Babaei, S.; Amirabadi, R.; Sharifi, M.; Ventura, C. Optimal probabilistic seismic demand model for fixed pile-founded offshore platforms considering soil-pile-structure interaction. Structures 2021, 33.
[14] Gu, G.; Adler, R.F. Spatial Patterns of Global Precipitation Change and Variability during 1901–2010. J. Clim. 2015, 28, 4431–4453. [CrossRef].
[15] Adler, R.F.; Gu, G.; Sapiano, M.; Wang, J.J.; Huffman, G.J. Global Precipitation: Means, Variations and Trends During the Satellite Era (1979–2014). Surv. Geophys. 2017, 38, 679–699. [CrossRef].
[16] Dai, A. Hydroclimatic trends during 1950–2018 over global land. Clim. Dyn. 2021, 56, 4027–4049. [CrossRef].
[17] Du, H.; Alexander, L.V.; Donat, M.G.; Lippmann, T.; Srivastava, A.; Salinger, J.; Kruger, A.; Choi, G.; He, H.S.; Fujibe, F. Precipitation from persistent extremes is increasing in most regions and globally. Geophys. Res. Lett. 2019,
46, 6041–6049. [CrossRef].
[18] Benestad, R.E.; Parding, K.M.; Erlandsen, H.B.; Mezghani, A. A simple equation to study changes in rainfall statistics. Environ. Res. Lett. 2019, 14, 084017. [CrossRef].
[19] Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Chapter 9: Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate, Change; Masson-Delmotte, V., Zhai, P., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 1211–1361.
[20] Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 2019, 9, 705-710. [CrossRef].
[21] Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014.Nat. Clim. Chang. 2017, 7, 492–495. [CrossRef].
[22] Sweet, W.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.T.B.; Horton, R.M.; Thieler, E.R.; Zervas, C.E. Global and Regional Sea Level Rise Scenarios for the United States. Available online: https://repository.library.noaa.gov/view/noaa/1839 9 (accessed on 5 December 2021).
[23] Goddard, P.B.; Yin, J.; Griffies, S.M.; Zhang, S. An extreme event of sea-level rise along the Northeast coast of North America in 2009 2010. Nat. Commun. 2015, 6, 6346.
[24] Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 5147. [CrossRef]
[25] Center for Operational Oceanographic Products and Services. Sea Level Trends. Available online: https://tidesandcurrents.noaa. gov/sltrends/sltrends.html (accessed on 2 December 2021).
[26] Savonis, M.J.; Burkett, V.; Potter, J.R. Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I. Available online: https://rosap.ntl.bts.gov/view/dot/17351 (accessed on 18 November 2021).
[27] VarianouMikellidou, C.; Shakou, L.M.; Boustras, G.; Dimopoulos, C. Energy critical infrastructures at risk from climate change: A state of the art review. Saf. Sci. 2018, 110, 110–120. [CrossRef].
[28] Katopodis, T.; Sfetsos, A. A Review of Climate Change Impacts to Oil Sector Critical Services and Suggested Recommendations for Industry Uptake. Infrastructures 2019, 4, 74. [CrossRef].
[29] Milman, O. US Oil Firm’s Bid to Drill for Oil in Arctic Hits Snag: A Lack of Sea Ice. Available online:
https://www.theguardian. Com/environment/2018/nov/15/arctic-oil-drilling-texas-hilcorp-beaufort-sea (accessed on 13 November 2021).
[30] Federal Highway Administration. US DOT Gulf Coast Study, Phase 2. Available online: https://www.hrpdcva.gov/uploads/docs/
7B_FHWA%20Summary%20%20Gulf%20Coast%20Phase
%202.pdf (accessed on 13 November 2021.
[31] Misuri, A.; Cruz, A.M.; Park, H.; Garnier, E.; Ohtsu, N.; Hokugo, A.; Fujita, I.; Aoki, S.-i.; Cozzani, V. Technological accidents caused by floods: The case of the Saga prefecture oil spill, Japan 2019. Int. J. Disaster Risk Reduct. 2021, 66, 102634. [CrossRef].
[32] S.; Hanson, S.; Nicholls, R.J. Implications of sea-level rise and extreme events around Europe: A review of coastal
energy infrastructure. Clim. Chang. 2014, 122, 81–95. [CrossRef].
[33] Ritchie, H.; Rosado, P.; Roser, M. Energy Mix. Our World in Data. 2024. Available online:
https://ourworldindata.org/energy-mix (accessed on 7 April 2024).
[34] Ritchie, H.; Rosado, P.; Roser, M. Energy Mix. Our World in Data. 2024. Available online:
https://ourworldindata.org/energy-mix (accessed on 7 April 2024).
[35] De Castro, M.; Salvador, S.; Gómez Gesteira, M.; Costoya, X.; Carvalho, D.; Sanz Larruga, F.J.; Gimeno, L. Europe, China and the United States: Three Different Approaches to the Development of Offshore Wind Energy. Renew.
Sustain. Energy Rev. 2019, 109, 55–70. [CrossRef].
[36] Díaz, H.; Guedes Soares, C. Review of the Current Status, Technology and Future Trends of Offshore Wind Farms. Ocean Eng. 2020, 209, 107381. [CrossRef].
[37] Rodrigues, S.; Restrepo, C.; Kontos, E.; Teixeira Pinto, R.; Bauer, P. Trends of Offshore Wind Projects. Renew. Sustain. Energy Rev. 2015, 49, 1114–1135 [CrossRef].
[38] Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application. In Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010. [CrossRef].
[39] Poudineh, R.; Brown, C.; Foley, B. Background: Role of the Offshore Wind Industry. In Economics of Offshore Wind Power; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 1–14. [CrossRef].
[40] Kaldellis, J.K.; Kapsali, M. Shifting towards Offshore Wind Energy-Recent Activity and Future Development. Energy Policy 2013, 53, 136–14.
[41] Esteban, M.D.; Diez, J.J.; López, J.S.; Negro, V. Why Offshore Wind Energy? Renew. Energy 2011, 36, 444–450. [CrossRef].
[42] Hevia-Koch, P.; Klinge Jacobsen, H. Comparing Offshore and Onshore Wind Development Considering Acceptance Costs. Energy Policy 2019, 125, 9–19.
[43] Ren, Z.; Verma, A.S.; Li, Y.; Teuwen, J.J.E.; Jiang, Z. Offshore Wind Turbine Operations and Maintenance: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2021, 144, 110886.
[44] Díaz, H.; Guedes Soares, C. Review of the Current Status, Technology and Future Trends of Offshore Wind Farms. Ocean Eng. 2020, 209, 107381.
[45] Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK; Hoboken, NJ, USA, 2001; p. 780.
[46] Sun, X.; Huang, D.; Wu, G. The Current State of Offshore Wind Energy Technology Development. Energy 2012, 41, 298–312. [CrossRef].
[47] MacKinnon, D.; Dawley, S.; Steen, M.; Menzel, M.P.; Karlsen, A.; Sommer, P.; Hansen, G.H.; Normann, H.E. Path Creation, Global Production Networks and Regional Development: A Comparative International Analysis of the Offshore Wind Sector. Prog. Plan. 2019, 130, 1–32.
[48] Johnston, B.; Foley, A.; Doran, J.; Littler, T. Levelised Cost of Energy, A Challenge for Offshore Wind. Renew. Energy 2020, 160, 876 885.
[49] Hevia-Koch, P.; Klinge Jacobsen, H. Comparing Offshore and Onshore Wind Development Considering Acceptance Costs. Energy Policy 2019, 125, 9–19.
[50] MacKinnon, D.; Dawley, S.; Steen, M.; Menzel, M.P.; Karlsen, A.; Sommer, P.; Hansen, G.H.; Normann, H.E. Path Creation, Global Production Networks and Regional Development: A Comparative International Analysis of the Offshore Wind Sector. Prog. Plan. 2019, 130, 1–32.
[51] Ye, X.; Chen, B.; Li, P.; Jing, L.; Zeng, G. A simulation-based multi-agent particle swarm optimization approach for supporting dynamic decision making in marine oil spill responses. Ocean Coast. Manag. 2019, 172, 128–136. [CrossRef].
[52] Guo, W.; Zhang, S.; Wu, G. Quantitative oil spill risk from offshore fields in the Bohai Sea, China. Sci. Total.
[53] Bach, M. The oil and gas sector: From climate laggard to climate leader? Environ. Polit. 2019, 28, 87–103.
[54] Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore oil spill response practices and emerging challenges. Mar. Pollut. Bull. 2016, 110, 6–27.
[55] Baniasadi, M.; Mousavi, S.M. A Comprehensive Review on the Bioremediation of Oil Spills. In Microbial Action on Hydrocarbons; Kumar, V., Kumar, M., et al., Eds.; Springer: Singapore, 2018; pp. 223–254.
[56] Hoang, A.T.; Pham, V.V.; Nguyen, D.N. A report of oil spill recovery technologies. Int. J. Appl. Eng. Res. 2018, 13, 4915-4928.
[57] Motta, F.L.; Stoyanov, S.R.; Soares, J.B.P. Application of solidifiers for oil spill containment: A review. Chemosphere
2018, 194, 837–846. [CrossRef] Hoang, A.T.; Pham, V.V.; Nguyen, D.N. A report of oil spill recovery technologies. Int. J.
Appl. Eng. Res. 2018, 13, 4915–4928.
[58] Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Elkin, A.A.; Makarov, S.O.; Cunningham, C.J.; Peshkur, T.A.;
Atlas, R.M.; Philp, J.C. Oil spill problems and sustainable response strategies through new technologies. Environ. Sci. Processes Impacts 2015, 17, 1201–1219. [CrossRef] [PubMed]
[59] Bejarano, A.C.; Levine, E.; Mearns, A.J. Effectiveness and potential ecological effects of offshore surface dispersant use during the Deepwater Horizon oil spill: A retrospective analysis of monitoring data. Environ. Monit. Assess. 2013,
185, 10281–10295.
[60] White, H.K.; Lyons, S.L.; Harrison, S.J.; Findley, D.M.; Liu, Y.; Kujawinski, E.B. Long-Term Persistence of Disper
sants following the Deepwater Horizon Oil Spill. Environ. Sci. Technol. Lett. 2014, 1, 295–299
[61] Bejarano, A.C. Critical review and analysis of aquatic toxicity data on oil spill dispersants. Environ. Toxicol. Chem. 2018, 37, 2989–3001.
[62] Fingas, M. Review of Solidifiers: An Update 2013. Available online: https://www.pwsrcac.org/wpfb-file/review
of-solidifiersan-update-2013-by-mervfingas-pdf-2/ (accessed on 14 December
2021).
Published
2025-12-13
How to Cite
1.
Alecsa C, Gasparotti C, Rusu L. Offshore platform adaptation to climate change through technological optimization and advanced monitoring. Annals of ”Dunarea de Jos” University of Galati. Fascicle XI Shipbuilding [Internet]. 13Dec.2025 [cited 7Jan.2026];48:23-0. Available from: https://gup.ugal.ro/ugaljournals/index.php/fanship/article/view/9467
Section
Articles