Alumina Influence on the Corrosion Resistance of Composite Layers Ni-P-Al2O3

  • Tamara RADU "Dunarea de Jos" University of Galati
Keywords: Ni-P-Al2O3, composite coatings, corrosion rate, HCl 0.1N

Abstract

This paper aims to analyze the corrosion resistance of composite layers based on Ni-P matrix and disperse phase alumina of 10 µm size, present in amounts of 5, 10 and 20 g / L in the nickel plating bath. The influence of alumina on the corrosion resistance of Ni-P-Al2O3 composite layers was tested in 0.1 N hydrochloric acid solution compared to Ni-P layers with different phosphorus contents. The samples immersed in the corrosive environment were weighed every 7 days for 4 weeks. The corrosion rate was appreciated considering the loss of mass per area in time. Mass loss was calculated considering the total time of corrosion and the mass lost each week for determining the kinetics of the process. The variation curves of the corrosion rate are presented, depending on the chemical composition of the analyzed layers and the corrosion time.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Glenn O. Mallory, Juan B. Hajdu, Electroless Plating: Fundamental and Applications, International Headquarters in Orlando, Florida, Reprint Edition, available online, 2008.
[2]. S. I. Balint, S. Constantinescu, L. Balint, Influence of heat treatment on the characteristics of Ni-P-Al2O3 composite layers, SGEM Proceeding, vol. 1 p. 99, 2015.
[3]. G. G. Istrate, S. I. Balint, A. Ciocan, V. Dragan, Influence of technological parameters on layer thickness to obtain Ni-P electroless coatings, SGEM Proceeding, vol. 1, p. 113, 2015.
[4]. T. Radu, M. Vlad, F. Potecasu, G. G. Istrate, Preparation and characterisation of electroless Ni-P-Al2O3 nanocomposite coatings, Digest Journal of Nanomaterials and Biostructures Vol. 10, no. 3, p. 1055-1065, 2015.
[5]. Z. Abdel Hamid, S. A. El Badry, A. Abdel Aal, Surf. & Coat. Technol., 201, 2007.
[6]. B. Elsener, M. Crobu, M. A. Scorciapino, A. Rossi, Journal of Applied Electrochemistry, 38, (7), 2008.
[7]. G. Jiaqiang, et al., Materials Letters, 59, (2-3), 2005.
[8]. J. N. Balaraju, C. Anandan, K. S. Rajam, Surf. & Coat. Technol., 200, (12-13), 2006.
[9]. C. Li, Y. Wang, Z. Pan, Materials and Design, 47, 2013.
[10]. S. A Froukhteh, C. Dehghanian, M. Emamy, Progres in Nature Science: Materials International, 22, (4), 2012.
[11]. P. Gadhari, P. Sahoo, Procedia Materials Science, 5, 2014.
[12]. A. S. Hamdy, M. A. Shoeib, H. Hady, O. F. Abdel Salam, Surf. & Coat., Technol, 202, 2007.
[13]. L. K. Hari Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan, P. M. Kavimani, Metallurgical and Materials Transactions A, vol. 37A, 2006.
[14]. J. N. Balaraju, K. S. Rajam, Surface & Coatings Technology, 200, p. 3933-3943, 2006.
[15]. T. Radu, S. Constantinescu, L. Balint, Materiale metalice rezistente la coroziune, Editura Ştiinţifică F. M. R., ISBN:973-8151-31-7, 2004.
Published
2015-09-15
How to Cite
1.
RADU T. Alumina Influence on the Corrosion Resistance of Composite Layers Ni-P-Al2O3. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Sep.2015 [cited 24Dec.2024];38(3):5-. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/1295
Section
Articles

Most read articles by the same author(s)