Tribocorrosion – Insight into Material Degradation in Specific Environments

  • Sorin-Bogdan BAŞA "Dunarea de Jos" University of Galati, Romania; Katholieke Universiteit Leuven, Belgium
  • Lidia BENEA "Dunarea de Jos" University of Galati, Romania
Keywords: corrosion, tribocorrosion, nanocomposite coatings, biomaterials, material degradation, specific environments

Abstract

Tribocorrosion is an irreversible surface degradation mechanism of a metallic and/or non-metallic material as a result of its physicochemical and mechanical interactions during relative motion (friction, sliding, impact, abrasion, erosion) in corrosive media. It encompasses synergistic effects between mechanical wear and chemical / electrochemical processes which interact with each other. Tribocorrosion processes lead to uneconomical material loss as well as to the decreasing of the following characteristics: durability, reliability, safety, performance, energy efficiency, pollution and health. Recent activity in tribocorrosion research aims at addressing the need to select or design new surfaces for future equipment as well as minimizing the operating costs and extending the life of existing machinery and medical devices. The work presents an overview and some experimental results from tribocorrosion tests of biomaterials and nanocomposite coatings in specific environments from physiological solutions to industrial environments.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Lidia Benea - Tribocorrosion in biomedical and industrial applications, Revista de Coroziune şi Protecţie Anticorozivă, ClujNapoca, vol. V, 2010, nr. 4, p. 4-7, ISSN 1842-0346.
[2]. Benea L., Wenger F., Ponthiaux P., Celis J. P. - Tribocorrosion behaviour of Ni–SiC nano-structured composite coatings obtained by electrodeposition, Wear, 266, 2009, p. 398-405.
[3]. Benea L., Mardare-Danaila E., Celis J.-P. - Increasing the tribological performances of Ti–6Al–4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions, Tribo. Int., 78, 2014, p. 168-175.
[4]. Benea L., Danaila E., Celis J. P. - Influence of electro-codeposition parameters on nano-TiO2inclusion into nickel matrix and properties characterization of nanocomposite coatings obtained, Mat. Science & Engineering A, 610, 2014, p. 106-115.
[5]. Mardare E., Benea L., Celis J.-P. - Importance of applied normal loads on the tribocorrosion behaviour of Ti-6Al-4V alloy in bio-simulated environment, Optoelectronics and advanced materials – Rapid communications, 6, 2012, p. 474-478.
[6]. Benea L., Ponthiaux P., Wenger F., Galland J., Hertz D., Malo J. Y. - Tribocorrosion of stellite 6 in sulphuric acid medium: electrochemical behaviour and wear, Wear, 256, 2004, p. 948-953.
[7]. Benea L., Iordache V. E., Wenger F., Ponthiaux P., Peybernes J., Vallory J. - Tribocorrosion mechanism study of stellite-6 and zircaloy-4 – a comparison in LiOH-H3BO3 solutions, The Annals of Dunarea de Jos University of Galati, Fascicle VIII, Tribology, 2005, p. 35-40.
[8]. F. Bratu, L. Benea, J.-P. Celis - Tribocorrosion behaviour of Ni–SiC composite coatings under lubricated conditions, Surface & Coaings. Technology, 201, 2007, p. 6940-6946.
[9]. L. Benea - Electrodeposition and tribocorrosion behaviour of ZrO2–Ni composite coatings, Journal of Applied Electrochemistry, 39, 2009, p. 1671-1681.
[10]. A. Berradja, F. Bratu, L. Benea, G. Willems, J. P. Celis - Effect of sliding wear on tribocorrosion behaviour of stainless steels in a Ringer’s solution, Wear, 261, 2006, p. 987-993.
[11]. R. J. K. Wood - Tribo-corrosion of coatings: a review, Journal of Physics D-Applied Physics, 40, 2007, p. 5502-5521.
[12]. D. Landolt, S. Mischler, M. Stemp - Electrochemical methods in tribocorrosion: a critical appraisal, Electrochimica Acta, 46, 2001, p. 3913-3929.
[13]. M. M. Stack - Mapping tribo-corrosion processes in dry and in aqueous conditions: some new directions for the new millennium, Tribology International, 35, 2002, p. 681-689.
[14]. S. Mischler - Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation, Tribology International, 41, 2008, p. 573-583.
[15]. ***, http://www.phy.davidson.edu.
[16]. ***, http://www.tribology-abc.com/abc/history.htm.
[17]. ***, http://www.bruker.com/fileadmin/user_upload/8-PDFDocs/SurfaceAnalysis/TMT/Webinars/Tribology_101_Webinar1_Intro_and_Basics_29-Jan-2013.pdf.
[18]. ***, http://wordinfo.info/unit/3067/s:nanotribology.
[19]. ***, Handbook of Micro/Nano Tribology, Second Edition, edited by Bharat Bhushan, ISBN 0-8493-8402-8, 1999 by CRC Press LLC.
[20]. ***, http://www.physics.ncsu.edu/nanotribology.
[21]. L. Benea, P. L. Bonora, A. Borello, S. Martelli - Wear corrosion properties of nano-structured SiC – nickel composite coatings obtained by electroplating, Wear, 249, (10/11), 2001, p. 995-1003.
[22]. ***, http://scholar.google.ro.
Published
2014-03-15
How to Cite
1.
BAŞA S-B, BENEA L. Tribocorrosion – Insight into Material Degradation in Specific Environments. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Mar.2014 [cited 25Dec.2024];37(1):5-2. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/2569
Section
Articles