The Effect of Fluoride Containing Toothpaste on the Electrochemical Behavior of 316L Stainless Steel for Dentistry Applications in the Human Saliva

  • Veaceslav NEAGA "Dunarea de Jos" University of Galati, Romania
  • Lidia BENEA "Dunarea de Jos" University of Galati, Romania
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.35219/mms.2020.4.07

Résumé

The study aims to investigate the effect of fluorinated toothpaste added in Fusayama-Meyer saliva in order to evaluate the electrochemical behavior of 316LSS for dentistry applications.
For electrochemical behavior in situ electrochemical measurements such as: Open circuit potential (OCP), Linear Polarization (PL), Potentiodynamic Polarization (PD) and Electrochemical Impedance Spectroscopy (EIS) were applied. The results show a comparative analysis of the electrochemical behavior and corrosion resistance of 316L-SS in human saliva containing high fluoride toothpaste for dentistry applications. From the electrochemical results it can be concluded that the addition of fluoride toothpaste in Fusayama-Meyer saliva decreases the corrosion resistance of 316L-SS and therefore will reduce the lifetime of dentistry structures or devices.

Creative Commons License

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Références

[1]. Dewangan A. K., Patel A. D., Bhadania A. G., Stainless steel for dairy and food industry: a review, J Material Sci Eng, 4: 1000191, 2015.
[2]. Ceschini L., Martini C., Rotundo F., Sliding contacts for the pharmaceutical industry: failure analysis and dry sliding tests for the replacement of hard Cr on AISI 316L steel, Tribol Int, 81: 248-257, https://doi.org/10.1016/j.triboint.2014.09.004, 2015.
[3]. Asri R. I. M., Harun W. S. W., Samykano M., Lah N. A. C., Ghani S. A. C., Tarlochan F., Raza M. R., Corrosion and surface modification on biocompatible metals: A review, Mater Sci Eng C 2017, 77: 1261-1274, https://doi.org/10.1016/j.msec.2017.04.102.
[4]. Holmes D., Sharifi S., Stack M. M., Tribo-corrosion of steel in artificial saliva, Tribol Int, 75: 80-86. https://doi.org/10.1016/j.triboint.2014.03.007, 2014.
[5]. Simionescu N., Ravoiu A., Benea L., Electrochemical in-vitro properties of 316L stainless steel for orthodontic applications, Rev Chim, 70: 1144-1148, 2019.
[6]. Tipanan Y., Pasutha T., Pintu C., Corrosion of metal orthodontic brackets and archwires caused by fluoride-containing products: Cytotoxicity, metal ion release and surface roughness, Orthod Waves, 77: 79-89, 2018.
[7]. Oshida Y., Sellers C. B., Mirza K., Farzin-Nia F., Corrosion of dental metallic materials by dental treatment agents, Mater Sci Eng C, 25: 343-348, 2005.
[8]. Anuwongnukroh N., Dechkunakorn S., Kanpiputana R., Oral hygiene behavior during fixed orthodontic treatment, Dentistry, 7: 1000457, DOI: 10.4172/2161-1122.1000457, 2017.
[9]. Sudjalim T. R., Woods M. G., Manton D. J., Prevention of white spot lesions in orthodontic practice: a contemporary review, Aust Dent J, 51: 284-289. doi: 10.1111/j.1834-7819.2006.tb00445.x, 2006.
[10]. Benyahia H., Ebntouhami M., Forsal I., Zaoui F., Aalloula E., Corrosion resistance of NiTi in fluoride and acid environments, Int Orthod, 7: 332-334, doi: 10.1016/S1761-7227(09)73506-5, 2009.
[11]. Kao C. T., Ding S. J., He H., Chou M. Y., Huang T. H., Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro, Angle Orthod, 7: 7349-354, 2007.
[12]. Alavi S., Farahi A., Effect of fluoride on friction between bracket and wire, Dent Res J, 8: 37-42, 2011.
[13]. Toderascu G., Dumitrascu V., Benea L., Chiriac A., Corrosion behaviour and biocompatibility of 316 stainless steel as biomaterial in physiological environment, Fascicle IX. Metallurgy and Materials Science, 4: 16-22, 2015.
[14]. Hayes A., Sharifi S., Stack M. M., Micro-abrasioncorrosion maps of 316L stainless steel in artificial saliva, J Bio & Tribo-Corros, 1: 1-25, 2015.
[15]. Jiang R., Wang Y., Wen X., Chen C., Zhao J., Effect of time on the characteristics of passive film formed on stainless steel, Appl Surf Sci, 412: 214-222, 2017.
[16]. Benea L., Simionescu N., Effect of biological solution and pH on corrosion resistance of 304L SS for dental brackets, Rev Chim, 71: 180-187. https://doi.org/10.37358/RC.20.4.8056, 2020.
[17]. Benea L., Mardare E., Mardare M., Celis J. P., Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behavior in bio-simulated fluid solution, Corros Sci, 80: 331-338, 2014.
[18]. Cheng L., Moor S., Kravchuk O., Meyers I., Ho C., Bacteria and salivary profile of adolescents with and without cleft lip and/or palate undergoing orthodontic treatment, Aust Dent J, 52: 315-321, doi: 10.1111/j.1834-7819.2007.tb00508.x, 2007.
[19]. Dumitrascu V. M., Benea L., Improving the corrosion behavior of 6061 aluminum alloy by controlled anodic formed oxide layer, Rev Chim, 68: 77-80, 2017.
[20]. Bard A., Faulkner L., Electrochemical methods. Fundamentals and application, 2-nd. ed. New York: Wiley, 2001.
[21]. Lasia A., Modern Aspects of Electrochemistry, vol 32, ed White RE, Conway BE, Bockris JO’M, New York: Kluwer Academic Plenum Publishers, 1999.
[22]. Brug G. J., Van den Eeden A. L. G., Sluyters-Rehbach M., Sluyters J. H., The analysis of electrode impedances complicated by the presence of a constant phase element, J Electroanal Chem Interf Electrochem, 176: 275-95.https://doi.org/10.1016/S0022-0728(84)80324-1, 1984.
[23]. Benea L., Danaila E., Ponthiaux P., Effect of titania anodic formation and hydroxyapatite electrodeposition on electrochemical behavior of Ti–6Al–4V alloy under fretting conditions for biomedical applications, Corros Sci, 91: 262-271.https://doi.org/10.1016/j.corsci.2014.11.026, 2015.
[24]. Ribeiro D. V., Souza C. A. C., Abrantes J. C. C., Electrochemical impedance spectroscopy (EIS) to monitoring the corrosion of reinforced concrete, Revista IBRACON de Estruturas e Materiais, 8: 529-546, 2015.
Publiée
2020-12-15
Rubrique
Articles

##plugins.generic.recommendByAuthor.heading##

1 2 3 > >>