Polymeric Blends: A Short Review
Keywords:
polymeric blends, nanoparticles, synthesis, classification
Abstract
At present, the use of polymeric materials is so intense in our society, that we could consider ourselves to be living in the „polymer age”. Due to their versatility, polymers are present in every step of our whole „infrastructure”. It is a growing research field due to the need of extending the application horizon of polymers with the purpose of replacing other materials (e.g. metallic) that are predominantly used in certain industries. This article is a review that discusses both the classification of polymer materials and state-of-the-art research of other authors with respect to polymer blends.
Downloads
Download data is not yet available.
References
[1]. Thomas S., Mathew A. P., V. P. M., Advances in natural polymers: composites and nanocomposites, Heidelberg, New York, Springer, 2013.
[2]. Pearce E. M., Howell B. A., Pethrick R. A., Zaikov G. E., Physical chemistry research for engineering and applied sciences, Oakville, ON, Canada, Waretown, NJ, USA, Apple Academic Press, 2015.
[3]. Briscoe B. J., Sinha S. K., Tribological applications of polymers and their composites – past, present and future prospects, Tribology of Polymeric Nanocomposites, Elsevier, p. 1-22, 2013.
[4]. Guo H. C., Ye E., Li Z., Han M.-Y., Loh X. J., Recent progress of atomic layer deposition on polymeric materials, Materials Science and Engineering: C, vol. 70, p. 1182-1191, 2017.
[5]. McKeen L., Introduction to Plastics and Polymers, The Effect of Sterilization Methods on Plastics and Elastomers, Elsevier, p. 41-61, 2018.
[6]. Brazel C. S., Rosen S. L., Rosen S. L., Fundamental principles of polymeric materials, Third edition. Hoboken, New Jersey, Wiley, 2012.
[7]. Fried J. R., Polymer science and technology, Third edition, Upper Saddle River, NJ, Prentice Hall, 2014.
[8]. Buggy, Polymeric Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
[9]. Young R. J., Lovell P. A., Introduction to polymers, Boca Raton, CRC Press, 2011.
[10]. Odian G. G., Principles of polymerization, 4th ed., Hoboken, N.J, Wiley-Interscience, 2004.
[11]. Awuzie C. I., Conducting Polymers, Materials Today: Proceedings, vol. 4, no. 4, p. 5721-5726, 2017.
[12]. Weitsman Y., Fluid effects in polymers and polymeric composites, New York, Springer, 2012.
[13]. Chikkali S., Metal-catalyzed polymerization: fundamentals to applications, Boca Raton: CRC Press, 2018.
[14]. ***, Design and applications of nanostructured polymer blends and nanocomposite systems, 1st edition, Waltham, MA, Elsevier, 2015.
[15]. Hasirci V., Huri P. Y., Tanir T. E., Eke G., Hasirci N., 1.22 Polymer Fundamentals: Polymer Synthesis, Comprehensive Biomaterials II, Elsevier, p. 478-506, 2017.
[16]. Soroush M., Grady M. C., Polymers, Polymerization Reactions, and Computational Quantum Chemistry, Computational Quantum Chemistry, Elsevier, p. 1-16, 2019.
[17]. Francis R., Kumar D. S., Biomedical applications of polymeric materials and composites, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2017.
[18]. Rezaie H. R., Shokuhfar A., Arianpour F., Nanocomposite Materials from Theory to Application, New Frontiers of Nanoparticles and Nanocomposite Materials, vol. 4, A. Öchsner and A. Shokuhfar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 171-232, 2012.
[19]. Ebewele R. O., Polymer science and technology, Boca Raton, CRC Press, 2000.
[20]. Banoriya D., Purohit R., Dwivedi R. K., Advanced Application of Polymer based Biomaterials, Materials Today, Proceedings, vol. 4, no. 2, 2017, p. 3534-3541.
[21]. Howell B. A. and American Chemical Society, Introduction of macromolecular science/polymeric materials into the foundational course in organic chemistry, Washington, DC, American Chemical Soc, 2013.
[22]. Kondratenko M. S., Elmanovich I. V., Gallyamov M. O., Polymer materials for electrochemical applications: Processing in supercritical fluids, The Journal of Supercritical Fluids, vol. 127, p. 229-246, Sep. 2017.
[23]. Zhu Y., Yang B., Chen S., Du J., Polymer vesicles: Mechanism, preparation, application, and responsive behavior, Progress in Polymer Science, vol. 64, p. 1-22, Jan. 2017.
[24]. Jordan R., Surface-initiated polymerization. I & II, Berlin, New York: Springer, 2006.
[25]. Chen H. et al., Thermal conductivity of polymer-based composites: Fundamentals and applications, Progress in Polymer Science, vol. 59, p. 41-85, Aug. 2016.
[26]. Huang C., Qian X., Yang R., Thermal conductivity of polymers and polymer nanocomposites, Materials Science and Engineering, R. Reports, vol. 132, p. 1-22, Oct. 2018.
[27]. Mehra N. et al., Thermal transport in polymeric materials and across composite interfaces, Applied Materials Today, vol. 12, p. 92-130, Sep. 2018.
[28]. Ramakrishna S., Mayer J., Wintermantel E., Leong K. W., Biomedical applications of polymer-composite materials: a review, Composites Science and Technology, vol. 61, no. 9, p. 1189-1224, Jul. 2001.
[29]. Mičicová Z., Pajtášová M., Domčeková S., Ondrušová D., Raník L., Liptáková T., Inorganic Materials and their Use in Polymeric Materials, Procedia Engineering, vol. 136, p. 239-244, 2016.
[30]. Sharma K. R., Polymer thermodynamics blends, copolymers and reversible polymerization, Boca Raton, Fla: CRC Press, 2012.
[31]. Pielichowski K., Njuguna J., Thermal degradation of polymeric materials, Shawbury: Rapra Technology, 2005.
[32]. van Krevelen D. W., te Nijenhuis K., Properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions, 4th, completely rev. ed ed. Amsterdam, Elsevier, 2009.
[33]. Chern C.-S., Principles and applications of emulsion polymerization, Hoboken, N.J, Wiley, 2008.
[34]. Moad G., Solomon D. H., Moad G., The chemistry of radical polymerization, 2nd fully rev. ed. Amsterdam, Boston, Elsevier, 2006.
[35]. Tang Z. et al., Polymeric nanostructured materials for biomedical applications, Progress in Polymer Science, vol. 60, p. 86-128, Sep. 2016.
[36]. Ibrahim Khan, Khalid Saeed, Idrees Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, May 2017.
[37]. Dominick Fazarro, Walt Trybula, Jitendra Tate, Craig Hanks, Nano-Safety, What We Need to Know to Protect Workers, ISBN 978-3-11-037375-2, 2017.
[38]. Rajendra Kumar Goyal, Nanomaterials and Nanocomposites Synthesis, Properties, Characterization Techniques, and Applications, ISBN 9781498761666, 2018.
[39]. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Springer International Publishing, ISBN 978-3-319-09170-9, 2015.
[40]. Jyotishkumar Parameswaranpillai, Nishar Hameed, Thomas Kurian, Yingfeng Yu, Nanocomposite materials Synthesis, Properties and Applications, CRC Press, ISBN 13: 978-1-4822-5807-3, 2017.
[41]. Jain N. K., Pathak S., Electrochemical Processing and Surface Finish, Comprehensive Materials Finishing, vol. 3, p 358-379, 2017.
[42]. Ma M., Rutledge G. C., Nanostructured Electrospun Fibers, Polymer Science: A Comprehensive Reference, vol. 7, p. 188-210, 2012.
[43]. Mouthuy P.-A., Ye H., Biomaterials: Electrospinning, Reference Module in Biomedical Sciences, Comprehensive Biotechnology (Second Edition), vol. 5, p. 23-36, 2011.
[44]. Lal A., Bleuler H., Wuthrich R., Fabrication of metallic nanoparticles by electrochemical discharges, Electrochemistry Communications 10, p. 488-491, 2008.
[45]. Shmigel A. V., Tikhonov P. A., Yu M., Pugachev K. E., Electrochemical Fabrication and Studies of Metal Silver Nanoparticles, Glass Physics and Chemistry, vol. 41, p. 329-333, 2015.
[46]. Jadhav R. A., Pandharinath S., Electrochemical Synthesis and Characterization of Transition Metal Nanoparticles. Chapter 2: Preparation Methods and Characterization Techniques, Shodhganga: A Reservoir of Indian Theses @ INFLIBNET, http://shodhganga.inflibnet.ac.in/jspui/handle/10603/84729.
[47]. Albrecht T., Horswell S., Allerston L. K., Rees N. V., Rodriguez P., Review Article Electrochemical processes at the nanoscale, Current Opinion in Electrochemistry, 2018.
[48]. Zangari G., Fundamentals of Electrodeposition, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry Surface Science and Electrochemistry, p. 141-160, 2018.
[49]. Hanawa T., Electrodeposition of Calcium Phosphates, Oxides, and Molecules to Achieve Biocompatibility of Metals, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry Surface Science and Electrochemistry, p. 129-140, 2018.
[50]. Chang Jiang Yang, Su-Moon Park, Electrochemical behavior of PbO2 nanowires array anodes in a zinc electrowinning solution, Electrochimica Acta, p. 86-94, 2013.
[51]. Costello M., Electrowinning, Gold Ore Processing, (Second Edition) Project Development and Operations, p. 585-594, 2016.
[52]. Pyry-Mikko Hannula, Muhammad Kamran Khalid, Dawid Janas, Kirsi Yliniemi, Mari Lundstrom, Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaters, Journal of Cleaner Production, p. 1033-1039, doi.org/10.1016/j.jclepro.2018.10.097, 2019.
[53]. Dong Hee Kang, Hyun Wook Kang, Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication, Applied Surface Science, p. 251-257, doi.org/10.1016/j.apsusc.2018.05.211, 2018.
[54]. Elena Ewaldz, Riddhi Patel, Manali Banerjee, Blair K. Brettmann, Material selection in electrospinning microparticles, Polymer, p. 529-537, doi.org/10.1016/j.polymer.2018.08.015, 2018.
[55]. Mehran Shahhosseininia, Saeed Bazgir, Morteza Daliri Joupari, Fabrication and investigation of silica nanofibers via electrospinning, Materials Science & Engineering C, p. 502-511, doi.org/10.1016/j.msec.2018.05.068, 2018.
[56]. Santhosh S. Nair, Aji P. Mathew, Porous composite membranes based on cellulose acetate and cellulose nanocrystals via electrospinning and electrospraying, Carbohydrate Polymers, p. 149-157, dx.doi.org/10.1016/j.carbpol.2017.07.048, 2017.
[57]. Rolf Wüthrich, Jana D., Abou Ziki, Chapter 2 Historical Overview of Electrochemical Discharges, Micromachining Using Electrochemical Discharge Phenomenon, (Second Edition), Fundamentals and Application of Spark Assisted Chemical Engraving, p. 13-33 doi.org/10.1016/B978-0-444-53178-0.00003-1, 2015.
[58]. Rolf Wüthrich, Philippe Mandin, Electrochemical discharges-Discovery and early applications, Electrochimica Acta 54, p. 4031-4035, doi:10.1016/j.electacta.2009.02.029, 2009.
[59]. Jens Muff, Chapter 3 - Electrochemical Oxidation – A Versatile Technique for Aqueous Organic Contaminant Degradation, Chemistry of Advanced Environmental Purification Processes of Water, Fundamentals and Applications, p. 75-134, doi.org/10.1016/B978-0-444-53178-0.00003-1, 2014.
[60]. Kuravappullam V., Radha Karunamoorthy Sirisha, Chapter 11 - Electrochemical Oxidation Processes, Advanced Oxidation Processes for Waste Water Treatment, Emerging Green Chemical Technology, p. 359-373, doi.org/10.1016/B978-0-12-810499-6.00011-5, 2018.
[61]. Kobayashi S., Müllen K., Encyclopedia of polymeric nanomaterials, Berlin, Springer, 2015.
[62]. Muralisrinivasan Subramanian, Basics of polymers: fabrication and processing technology, New York, Momentum Press., 2015.
[63]. Das R., Polymeric materials for clean water, 2019.
[64]. Babapoor A., Karimi G., Khorram M., Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning, Applied Thermal Engineering, vol. 99, p. 1225-1235, 2016.
[65]. Jasim S. E., Jusoh M. A., Hafiz M., Jose R., Fabrication of Superconducting YBCO Nanoparticles by Electrospinning, Procedia Engineering, vol. 148, p. 243-248, 2016.
[66]. Wei Y. et al., Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties, Journal of Alloys and Compounds, vol. 735, p. 1488-1493, 2018.
[67]. Lu X., Li L., Zhang W., Wang C., Preparation and characterization of Ag 2 S nanoparticles embedded in polymer fibre matrices by electrospinning, Nanotechnology, vol. 16, no. 10, p. 2233-2237, 2005.
[68]. Rodaev V. V., Zhigachev A. O., Golovin Y. I., Fabrication and characterization of electrospun ZrO2/Al2O3 nanofibers, Ceramics International, vol. 43, no. 17, p. 16023-16026, 2017.
[69]. Sun G.-X., Liu F.-T., Bi J.-Q., Wang C.-A., Electrospun zirconia nanofibers and corresponding formation mechanism study, Journal of Alloys and Compounds, vol. 649, p. 788-792, 2015.
[2]. Pearce E. M., Howell B. A., Pethrick R. A., Zaikov G. E., Physical chemistry research for engineering and applied sciences, Oakville, ON, Canada, Waretown, NJ, USA, Apple Academic Press, 2015.
[3]. Briscoe B. J., Sinha S. K., Tribological applications of polymers and their composites – past, present and future prospects, Tribology of Polymeric Nanocomposites, Elsevier, p. 1-22, 2013.
[4]. Guo H. C., Ye E., Li Z., Han M.-Y., Loh X. J., Recent progress of atomic layer deposition on polymeric materials, Materials Science and Engineering: C, vol. 70, p. 1182-1191, 2017.
[5]. McKeen L., Introduction to Plastics and Polymers, The Effect of Sterilization Methods on Plastics and Elastomers, Elsevier, p. 41-61, 2018.
[6]. Brazel C. S., Rosen S. L., Rosen S. L., Fundamental principles of polymeric materials, Third edition. Hoboken, New Jersey, Wiley, 2012.
[7]. Fried J. R., Polymer science and technology, Third edition, Upper Saddle River, NJ, Prentice Hall, 2014.
[8]. Buggy, Polymeric Materials, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
[9]. Young R. J., Lovell P. A., Introduction to polymers, Boca Raton, CRC Press, 2011.
[10]. Odian G. G., Principles of polymerization, 4th ed., Hoboken, N.J, Wiley-Interscience, 2004.
[11]. Awuzie C. I., Conducting Polymers, Materials Today: Proceedings, vol. 4, no. 4, p. 5721-5726, 2017.
[12]. Weitsman Y., Fluid effects in polymers and polymeric composites, New York, Springer, 2012.
[13]. Chikkali S., Metal-catalyzed polymerization: fundamentals to applications, Boca Raton: CRC Press, 2018.
[14]. ***, Design and applications of nanostructured polymer blends and nanocomposite systems, 1st edition, Waltham, MA, Elsevier, 2015.
[15]. Hasirci V., Huri P. Y., Tanir T. E., Eke G., Hasirci N., 1.22 Polymer Fundamentals: Polymer Synthesis, Comprehensive Biomaterials II, Elsevier, p. 478-506, 2017.
[16]. Soroush M., Grady M. C., Polymers, Polymerization Reactions, and Computational Quantum Chemistry, Computational Quantum Chemistry, Elsevier, p. 1-16, 2019.
[17]. Francis R., Kumar D. S., Biomedical applications of polymeric materials and composites, Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA, 2017.
[18]. Rezaie H. R., Shokuhfar A., Arianpour F., Nanocomposite Materials from Theory to Application, New Frontiers of Nanoparticles and Nanocomposite Materials, vol. 4, A. Öchsner and A. Shokuhfar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 171-232, 2012.
[19]. Ebewele R. O., Polymer science and technology, Boca Raton, CRC Press, 2000.
[20]. Banoriya D., Purohit R., Dwivedi R. K., Advanced Application of Polymer based Biomaterials, Materials Today, Proceedings, vol. 4, no. 2, 2017, p. 3534-3541.
[21]. Howell B. A. and American Chemical Society, Introduction of macromolecular science/polymeric materials into the foundational course in organic chemistry, Washington, DC, American Chemical Soc, 2013.
[22]. Kondratenko M. S., Elmanovich I. V., Gallyamov M. O., Polymer materials for electrochemical applications: Processing in supercritical fluids, The Journal of Supercritical Fluids, vol. 127, p. 229-246, Sep. 2017.
[23]. Zhu Y., Yang B., Chen S., Du J., Polymer vesicles: Mechanism, preparation, application, and responsive behavior, Progress in Polymer Science, vol. 64, p. 1-22, Jan. 2017.
[24]. Jordan R., Surface-initiated polymerization. I & II, Berlin, New York: Springer, 2006.
[25]. Chen H. et al., Thermal conductivity of polymer-based composites: Fundamentals and applications, Progress in Polymer Science, vol. 59, p. 41-85, Aug. 2016.
[26]. Huang C., Qian X., Yang R., Thermal conductivity of polymers and polymer nanocomposites, Materials Science and Engineering, R. Reports, vol. 132, p. 1-22, Oct. 2018.
[27]. Mehra N. et al., Thermal transport in polymeric materials and across composite interfaces, Applied Materials Today, vol. 12, p. 92-130, Sep. 2018.
[28]. Ramakrishna S., Mayer J., Wintermantel E., Leong K. W., Biomedical applications of polymer-composite materials: a review, Composites Science and Technology, vol. 61, no. 9, p. 1189-1224, Jul. 2001.
[29]. Mičicová Z., Pajtášová M., Domčeková S., Ondrušová D., Raník L., Liptáková T., Inorganic Materials and their Use in Polymeric Materials, Procedia Engineering, vol. 136, p. 239-244, 2016.
[30]. Sharma K. R., Polymer thermodynamics blends, copolymers and reversible polymerization, Boca Raton, Fla: CRC Press, 2012.
[31]. Pielichowski K., Njuguna J., Thermal degradation of polymeric materials, Shawbury: Rapra Technology, 2005.
[32]. van Krevelen D. W., te Nijenhuis K., Properties of polymers: their correlation with chemical structure: their numerical estimation and prediction from additive group contributions, 4th, completely rev. ed ed. Amsterdam, Elsevier, 2009.
[33]. Chern C.-S., Principles and applications of emulsion polymerization, Hoboken, N.J, Wiley, 2008.
[34]. Moad G., Solomon D. H., Moad G., The chemistry of radical polymerization, 2nd fully rev. ed. Amsterdam, Boston, Elsevier, 2006.
[35]. Tang Z. et al., Polymeric nanostructured materials for biomedical applications, Progress in Polymer Science, vol. 60, p. 86-128, Sep. 2016.
[36]. Ibrahim Khan, Khalid Saeed, Idrees Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry, May 2017.
[37]. Dominick Fazarro, Walt Trybula, Jitendra Tate, Craig Hanks, Nano-Safety, What We Need to Know to Protect Workers, ISBN 978-3-11-037375-2, 2017.
[38]. Rajendra Kumar Goyal, Nanomaterials and Nanocomposites Synthesis, Properties, Characterization Techniques, and Applications, ISBN 9781498761666, 2018.
[39]. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Springer International Publishing, ISBN 978-3-319-09170-9, 2015.
[40]. Jyotishkumar Parameswaranpillai, Nishar Hameed, Thomas Kurian, Yingfeng Yu, Nanocomposite materials Synthesis, Properties and Applications, CRC Press, ISBN 13: 978-1-4822-5807-3, 2017.
[41]. Jain N. K., Pathak S., Electrochemical Processing and Surface Finish, Comprehensive Materials Finishing, vol. 3, p 358-379, 2017.
[42]. Ma M., Rutledge G. C., Nanostructured Electrospun Fibers, Polymer Science: A Comprehensive Reference, vol. 7, p. 188-210, 2012.
[43]. Mouthuy P.-A., Ye H., Biomaterials: Electrospinning, Reference Module in Biomedical Sciences, Comprehensive Biotechnology (Second Edition), vol. 5, p. 23-36, 2011.
[44]. Lal A., Bleuler H., Wuthrich R., Fabrication of metallic nanoparticles by electrochemical discharges, Electrochemistry Communications 10, p. 488-491, 2008.
[45]. Shmigel A. V., Tikhonov P. A., Yu M., Pugachev K. E., Electrochemical Fabrication and Studies of Metal Silver Nanoparticles, Glass Physics and Chemistry, vol. 41, p. 329-333, 2015.
[46]. Jadhav R. A., Pandharinath S., Electrochemical Synthesis and Characterization of Transition Metal Nanoparticles. Chapter 2: Preparation Methods and Characterization Techniques, Shodhganga: A Reservoir of Indian Theses @ INFLIBNET, http://shodhganga.inflibnet.ac.in/jspui/handle/10603/84729.
[47]. Albrecht T., Horswell S., Allerston L. K., Rees N. V., Rodriguez P., Review Article Electrochemical processes at the nanoscale, Current Opinion in Electrochemistry, 2018.
[48]. Zangari G., Fundamentals of Electrodeposition, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry Surface Science and Electrochemistry, p. 141-160, 2018.
[49]. Hanawa T., Electrodeposition of Calcium Phosphates, Oxides, and Molecules to Achieve Biocompatibility of Metals, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of Interfacial Chemistry Surface Science and Electrochemistry, p. 129-140, 2018.
[50]. Chang Jiang Yang, Su-Moon Park, Electrochemical behavior of PbO2 nanowires array anodes in a zinc electrowinning solution, Electrochimica Acta, p. 86-94, 2013.
[51]. Costello M., Electrowinning, Gold Ore Processing, (Second Edition) Project Development and Operations, p. 585-594, 2016.
[52]. Pyry-Mikko Hannula, Muhammad Kamran Khalid, Dawid Janas, Kirsi Yliniemi, Mari Lundstrom, Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaters, Journal of Cleaner Production, p. 1033-1039, doi.org/10.1016/j.jclepro.2018.10.097, 2019.
[53]. Dong Hee Kang, Hyun Wook Kang, Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication, Applied Surface Science, p. 251-257, doi.org/10.1016/j.apsusc.2018.05.211, 2018.
[54]. Elena Ewaldz, Riddhi Patel, Manali Banerjee, Blair K. Brettmann, Material selection in electrospinning microparticles, Polymer, p. 529-537, doi.org/10.1016/j.polymer.2018.08.015, 2018.
[55]. Mehran Shahhosseininia, Saeed Bazgir, Morteza Daliri Joupari, Fabrication and investigation of silica nanofibers via electrospinning, Materials Science & Engineering C, p. 502-511, doi.org/10.1016/j.msec.2018.05.068, 2018.
[56]. Santhosh S. Nair, Aji P. Mathew, Porous composite membranes based on cellulose acetate and cellulose nanocrystals via electrospinning and electrospraying, Carbohydrate Polymers, p. 149-157, dx.doi.org/10.1016/j.carbpol.2017.07.048, 2017.
[57]. Rolf Wüthrich, Jana D., Abou Ziki, Chapter 2 Historical Overview of Electrochemical Discharges, Micromachining Using Electrochemical Discharge Phenomenon, (Second Edition), Fundamentals and Application of Spark Assisted Chemical Engraving, p. 13-33 doi.org/10.1016/B978-0-444-53178-0.00003-1, 2015.
[58]. Rolf Wüthrich, Philippe Mandin, Electrochemical discharges-Discovery and early applications, Electrochimica Acta 54, p. 4031-4035, doi:10.1016/j.electacta.2009.02.029, 2009.
[59]. Jens Muff, Chapter 3 - Electrochemical Oxidation – A Versatile Technique for Aqueous Organic Contaminant Degradation, Chemistry of Advanced Environmental Purification Processes of Water, Fundamentals and Applications, p. 75-134, doi.org/10.1016/B978-0-444-53178-0.00003-1, 2014.
[60]. Kuravappullam V., Radha Karunamoorthy Sirisha, Chapter 11 - Electrochemical Oxidation Processes, Advanced Oxidation Processes for Waste Water Treatment, Emerging Green Chemical Technology, p. 359-373, doi.org/10.1016/B978-0-12-810499-6.00011-5, 2018.
[61]. Kobayashi S., Müllen K., Encyclopedia of polymeric nanomaterials, Berlin, Springer, 2015.
[62]. Muralisrinivasan Subramanian, Basics of polymers: fabrication and processing technology, New York, Momentum Press., 2015.
[63]. Das R., Polymeric materials for clean water, 2019.
[64]. Babapoor A., Karimi G., Khorram M., Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning, Applied Thermal Engineering, vol. 99, p. 1225-1235, 2016.
[65]. Jasim S. E., Jusoh M. A., Hafiz M., Jose R., Fabrication of Superconducting YBCO Nanoparticles by Electrospinning, Procedia Engineering, vol. 148, p. 243-248, 2016.
[66]. Wei Y. et al., Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties, Journal of Alloys and Compounds, vol. 735, p. 1488-1493, 2018.
[67]. Lu X., Li L., Zhang W., Wang C., Preparation and characterization of Ag 2 S nanoparticles embedded in polymer fibre matrices by electrospinning, Nanotechnology, vol. 16, no. 10, p. 2233-2237, 2005.
[68]. Rodaev V. V., Zhigachev A. O., Golovin Y. I., Fabrication and characterization of electrospun ZrO2/Al2O3 nanofibers, Ceramics International, vol. 43, no. 17, p. 16023-16026, 2017.
[69]. Sun G.-X., Liu F.-T., Bi J.-Q., Wang C.-A., Electrospun zirconia nanofibers and corresponding formation mechanism study, Journal of Alloys and Compounds, vol. 649, p. 788-792, 2015.
Published
2018-12-15
How to Cite
1.
GOROVEI MC, BUNEA M, CÎRCIUMARU A, BÎRSAN IG. Polymeric Blends: A Short Review. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2018 [cited 23Jan.2025];41(4):15-8. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/2755
Issue
Section
Articles