Fiber Orientation and Fillers Effects on Specific Heat of Fabric Reinforced Hybrid Epoxy Composites

  • Marina BUNEA "Dunarea de Jos" University of Galati, Romania
  • Mihaela Claudia GOROVEI "Dunarea de Jos" University of Galati, Romania
  • Claudia Veronica UNGUREANU "Dunarea de Jos" University of Galati, Romania
  • Vasile BRIA "Dunarea de Jos" University of Galati, Romania
Keywords: hybrid stratified composites, filled epoxy matrix, fiber orientation, specific heat

Abstract

In this investigation, the specific heat of four fabric reinforced hybrid composite materials with filled stratified epoxy matrix was analysed. All hybrid composite materials were made of 17 layers, for which were used carbon, aramid, glass and hybrid fabrics. The stratified filled epoxy matrix of fabric reinforced hybrid composites represents a matrix, in whose structure it was used three types of fillers mixtures between certain plies. The investigation of specific heat of hybrid composite materials was performed by using of Differential Scanning Calorimetry instrument. It was analysed the effects of fiber orientation at various angles on specific heat of fabric reinforced hybrid composites with filled stratified epoxy matrix and the influence of fillers mixtures on these thermal properties of epoxy matrix. Also, it was studied the specific heat of hybrid epoxy composites in dependence of carbon and aramid plies number in studied materials structure.

Creative Commons License

References

[1]. Vidal P., Gallimard L., Ranc I., Polit O., Thermal and thermo-mechanical solution of laminated composite beam based on a variables separation for arbitrary volume heat source locations, Applied Mathematical Modelling, 46, p. 98-115, https://doi.org/10.1016/j.apm.2017.01.064, 2017.
[2]. Saba N., Jawaid M., A review on thermomechanical properties of polymers and fibers reinforced polymer composites, Journal of Industrial and Engineering Chemistry, 67, p. 1-11, https://doi.org/10.1016/j.jiec.2018.06.018, 2018.
[3]. Melvin A. D., Lucia A. C., Solomos G. P., The thermal response to deformation to fracture of a carbon/epoxy composite laminate, Composites Science and Technology, 46, p. 345-351, https://doi.org/10.1016/0266-3538(93)90180-O, 1993.
[4]. Karnati S. R., Agbo P., Zhang L., Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite, Composites Communications, 17, p. 32-41, https://doi.org/10.1016/j.coco.2019.11.003, 2020.
[5]. Praveen R. S., Jacob S., Murthy C. R. L., Balachandran P., Rao Y. V. K. S., Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures, Cryogenics, 51, p. 95-104. https://doi.org/10.1016/j.cryogenics.2010.12.003, 2011.
[6]. Birsan I. G., Roman I., Bria V., Ungureanu V., Circiumaru A., Starch-Epoxy Composites, Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium, 22 p. 285-286, 2011.
[7]. Abdel-Aal N., El-Tantawy F., Al-Hajry A., Bououdina M., Epoxy resin/plasticized carbon black composites. Part I. Electrical and thermal properties and their applications, Polymer Composites, 29, p. 511-517, https://doi.org/10.1002/pc.20401, 2008.
[8]. Bera T., Acharya S. K., Mishra P., Synthesis, mechanical and thermal properties of carbon black/epoxy composites, International Journal of Engineering, Science and Technology, 10, p. 12-20, https://doi.org/10.4314/ijest.v10i4.2, 2018.
[9]. Muntenita C., Ungureanu C., Bria V., Graur I., Specific heat of nano-ferrites modified composites, MATEC Web of Conferences, 112, 04016, 2017.
[10]. Birsan I. G., Bria V., Circiumaru A., Roman I., Characterization of particulate epoxy composites, The Annals of University “Dunărea de Jos” of Galati, Fascicle VIII, XV, p. 83-87, 2009.
[11]. Jarosinski L., Rybak A., Gaska K., Kmita G., Porebska R., Kapusta C., Enhanced thermal conductivity of graphene nanoplatelets epoxy composites, Materials Science-Poland, 35, p. 382-389, https://doi.org/10.1515/msp-2017-0028, 2017.
[12]. Zhu D., Qi Y., Yu W., Chen L., Wang M., Xie H., Enhanced Thermal Conductivity for Graphene Nanoplatelets/Epoxy Resin Composites, Journal of Thermal Science and Engineering Applications, 10, 2018.
[13]. Wang F., Drzal L. T., Qin Y., Huang Z., Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites, Journal of Materials Science, 50, p. 1082-1093, https://doi.org/10.1007/s10853-014-8665-6, 2015.
[14]. Park J. G., Cheng Q., Lu J., Bao J., Li S., Tian Y., Liang Z., Zhang C., Wang B., Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization, Carbon, 50, p. 2083-2090, 2012.
[15]. Yang S. Y., Ma C. C. M., Teng C. C., Huang Y. W., Liao S. H., Huang Y. L., Tien H. W., Lee T. M., Chiou K. C., Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites, Carbon, 48, p. 592-603. https://doi.org/10.1016/j.carbon.2009.08.047, 2010.
[16]. Caradonna A., Badini C., Padovano E., Pietroluongo M., Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring, Materials, 12, 1522, https://doi.org/10.3390/ma12091522, 2019.
[17]. Majeed N. S., Salih S. M., Abdulmajeed B. A., Effect of nanoparticles on thermal conductivity of epoxy resin system, IOP Conference Series: Materials Science and Engineering, 518, 062006, https://doi.org/10.1088/1757-899X/518/6/062006, 2019.
[18]. Li X., Park W., Chen Y. P., Ruan X., Effect of Particle Size and Aggregation on Thermal Conductivity of Metal–Polymer Nanocomposite, Journal of Heat Transfer, 139, https://doi.org/10.1115/1.4034757, 2017.
[19]. Thipperudrappa S., Ullal Kini A., Hiremath A., Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber‐reinforced epoxy nanocomposites, Polymer Composites, https://doi.org/10.1002/pc.25357, 2019.
[20]. Kandare E., Khatibi A. A., Yoo S., Wang R., Ma J., Olivier P., Gleizes N., Wang C. H., Improving the throughthickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nanoinclusions, Composites Part A: Applied Science and Manufacturing, 69, p. 72-82, 2015.
[21]. Bunea M., Cîrciumaru A., Buciumeanu M., Bîrsan I. G., Silva F. S., Low velocity impact response of fabric reinforced hybrid composites with stratified filled epoxy matrix, Composites Science and Technology, 169, p. 242-248. https://doi.org/10.1016/j.compscitech.2018.11.024, 2019.
[22]. Bunea M., Bosoanca R., Eni C., Cristache N., Stefanescu V., The impact characteristics of fabric reinforced hybrid composites, Materiale Plastice, 54, p. 286-290, 2017.
[23]. Bunea M., Bosoanca I., Bosoanca R., Bodor M., Circiumaru A., Bending and Compressive Properties of Fabric Reinforced Composites, Materiale Plastice, 52, p. 368-372, 2015.
[24]. Bria V., Cîrciumaru A., Bîrsan I. G., Some Properties of Starch/Epoxy Composites, Materiale Plastice, 48, p. 189-194, 2011.
Published
2019-06-15
How to Cite
1.
BUNEA M, GOROVEI MC, UNGUREANU CV, BRIA V. Fiber Orientation and Fillers Effects on Specific Heat of Fabric Reinforced Hybrid Epoxy Composites. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Jun.2019 [cited 3Jul.2024];42(2):32-8. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/2790
Section
Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.