Modified Thermosets – A Review

  • Sebastian Marian DRĂGHICI “Dunarea de Jos” University of Galati, Romania
  • Irina DĂNĂILĂ (ȚÎCĂU) “Dunarea de Jos” University of Galati, Romania
  • Tamara APARECI (GÎRNEȚ) “Dunarea de Jos” University of Galati, Romania
  • Gabriel SĂRACU “Dunarea de Jos” University of Galati, Romania
  • Iulian PĂDURARU “Dunarea de Jos” University of Galati, Romania
  • Vasile BRIA “Dunarea de Jos” University of Galati, Romania
  • Adrian CÎRCIUMARU “Dunarea de Jos” University of Galati, Romania
  • Mihaela-Claudia GOROVEI “Dunarea de Jos” University of Galati, Romania
Keywords: nano-fibres, thermoset polymers, synthesis

Abstract

Recent and extensive reports on the development of preparation methods that can lead to obtaining various nanostructured polymeric materials, including the preparation of nanoparticles, nano-capsules, nano-gels, nano-fibres, dendrimers and nano-composites, have been presented in the literature to provide a picture of the complexity of the field, and the diversity of approaching methods. From the data presented by various researchers, it appears that by ensuring a rigorous control of the nano-structuration of polymers and/or by adding nano-particles to the polymer matrices, improvements in structural and functional properties can be achieved in a significant number of polymer systems as a response to the continuous demands of industrial advanced sectors. Until now, most of the studies on polymer blends have been related to the control of their physical and chemical properties, their barrier properties or their electrical conductivity. This paper briefly presents various applications of resins (thermoset polymers) used to synthesize some polymer materials and blends.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Wang X., Lu H., Liu X., Hossain M., Fu Y. Q., Xu B. B., Dynamic coordination of miscible polymer blends towards highly designable shape memory effect, Polymer, vol. 208, p. 122946, doi: 10.1016/j.polymer.2020.122946, nov. 2020.
[2]. Alsewailem F. D., Low-temperature synthesis method for the fabrication of efficient polymer-blend systems, Journal of Materials Research and Technology, vol. 13, p. 1098-1102, doi: 10.1016/j.jmrt.2021.05.020, iul. 2021.
[3]. Mehra N., Mu L., Ji T., Li Y., Zhu J., Moisture driven thermal conduction in polymer and polymer blends, Composites Science and Technology, vol. 151, p. 115-123, doi: 10.1016/j.compscitech.2017.08.010, oct. 2017.
[4]. Kato R., Yano T., Tanaka T., Multi-modal vibrational analysis of blend polymers using mid-infrared photothermal and Raman microscopies, Vibrational Spectroscopy, vol. 118, p. 103333, doi: 10.1016/j.vibspec.2021.103333, ian. 2022.
[5]. Huang L.-H., Wu C.-H., Hua C.-C., Huang T.-J., Multiscale simulations of coupled composition-stress-morphology of binary polymer blend, Polymer, vol. 193, p. 122366, doi: 10.1016/j.polymer.2020.122366, apr. 2020.
[6]. Hu J., Song Y., Ning N., Zhang L., Yu B., Tian M., An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush, Polymer, vol. 214, p. 123375, doi: 10.1016/j.polymer.2020.123375, feb. 2021.
[7]. Kalita G., Umeno M., Tanemura M., Blend of Silicon Nanostructures and Conducting Polymers for Solar Cells, Nanostructured Polymer Blends, Elsevier, p. 495-508, doi: 10.1016/B978-1-4557-3159-6.00014-6, 2014.
[8]. Song S., et al., Mussel-inspired, self-healing polymer blends, Polymer, vol. 198, p. 122528, doi: 10.1016/j.polymer.2020.122528, iun. 2020.
[9]. Tipduangta P., Belton P., McAuley W. J., Qi S., The use of polymer blends to improve stability and performance of electrospun solid dispersions: The role of miscibility and phase separation, International Journal of Pharmaceutics, vol. 602, p. 120637, doi: 10.1016/j.ijpharm.2021.120637, iun. 2021.
[10]. Keshavamurthy R., Tambrallimath V., Saravanabavan D., Development of Polymer Composites by Additive Manufacturing Process, Encyclopedia of Materials: Composites, Elsevier, p. 804-814, doi: 10.1016/B978-0-12-803581-8.11885-5, 2021.
[11]. Shi Y.-C., et al., Rational design of a functionalized silicone polymer for modifying epoxy-based composites, Journal of Materials Research and Technology, vol. 19, p. 3867-3876, doi: 10.1016/j.jmrt.2022.06.086, iul. 2022.
[12]. Fu Y., Yao X., A review on manufacturing defects and their detection of fiber reinforced resin matrix composites, Composites Part C: Open Access, vol. 8, p. 100276, doi: 10.1016/j.jcomc.2022.100276, iul. 2022.
[13]. Nash N. H., Portela A., Bachour-Sirerol C. I., Manolakis I., Comer A. J., Effect of environmental conditioning on the properties of thermosetting- and thermoplastic-matrix composite materials by resin infusion for marine applications, Composites Part B: Engineering, vol. 177, p. 107271, doi: 10.1016/j.compositesb.2019.107271, nov. 2019.
[14]. Voto G., Sequeira L., Skordos A. A., Formulation based predictive cure kinetics modelling of epoxy resins, Polymer, vol. 236, p. 124304, doi: 10.1016/j.polymer.2021.124304, nov. 2021.
[15]. Varma I. K., Gupta V. B., Sini N. K., 2.19 Thermosetting Resin – Properties, Comprehensive Composite Materials II, Elsevier, p. 401-468, doi: 10.1016/B978-0-12-803581-8.03829-7, 2018.
[16]. Ratna D., Handbook of thermoset resins, Shawbury: iSmithers, 2009.
[17]. Obande W., Ó Brádaigh C. M., Ray D., Continuous fibrereinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion – A review, Composites Part B: Engineering, vol. 215, p. 108771, doi: 10.1016/j.compositesb.2021.108771, iun. 2021.
[18]. Shafiei E., Kiasat M. S., A new viscoplastic model and experimental characterization for thermosetting resins, Polymer Testing, vol. 84, p. 106389, doi: 10.1016/j.polymertesting.2020.106389, apr. 2020.
[19]. Li J., et al., A multiscale model for the synthesis of thermosetting resins: From the addition reaction to cross-linked network formation, Chemical Physics Letters, vol. 720, p. 64-69, doi: 10.1016/j.cplett.2019.02.012, apr. 2019.
[20]. Hu J., et al., A novel development route for cyano-based high performance thermosetting resins via the strategy of functional group design-dicyanoimidazole resins, Polymer, vol. 203, p. 122823, doi: 10.1016/j.polymer.2020.122823, aug. 2020.
[21]. Dhinakaran V., Surendar K. V., Hasunfur Riyaz M. S., Ravichandran M., Review on study of thermosetting and thermoplastic materials in the automated fiber placement process, Materials Today: Proceedings, vol. 27, p. 812-815, doi: 10.1016/j.matpr.2019.12.355, 2020.
[22]. Memon H., Wei Y., Zhu C., Recyclable and reformable epoxy resins based on dynamic covalent bonds – Present, past, and future, Polymer Testing, vol. 105, p. 107420, doi: 10.1016/j.polymertesting.2021.107420, ian. 2022.
[23]. Kudo H., Nishioka S., Jin H., Maekawa H., Nakamura S., Masuda T., Thermosetting epoxy resin system: Ring-opening by copolymerization of epoxide with D,L-Lactide, Polymer, vol. 240, p. 124489, doi: 10.1016/j.polymer.2021.124489, feb. 2022.
[24]. Laouchedi D., Bezzazi B., Aribi C., Elaboration and characterization of composite material based on epoxy resin and clay fillers, Journal of Applied Research and Technology, vol. 15, nr. 2, p. 190-204, doi: 10.1016/j.jart.2017.01.005, apr. 2017.
[25]. Jeong H., Jang K.-S., Catalysis of reduced tin oxide in various epoxy resins, Materials Today Communications, vol. 30, p. 103178, doi: 10.1016/j.mtcomm.2022.103178, mar. 2022.
[26]. Shen Z., Xia Z., Zhang Y., Characterization and properties of epoxy resin (E-20) modified with silicone intermediate RSN-6018, Progress in Organic Coatings, vol. 114, p. 115-122, doi: 10.1016/j.porgcoat.2017.10.014, ian. 2018.
[27]. Wang X., Ma B., Chen S., Wei K., Kang X., Properties of epoxy-resin binders and feasibility of their application in pavement mixtures, Construction and Building Materials, vol. 295, p. 123531, doi: 10.1016/j.conbuildmat.2021.123531, aug. 2021.
[28]. da Silva L. R. R., et al., Bio-based one-component epoxy resin: Novel high-performance anticorrosive coating from agro-industrial byproduct, Progress in Organic Coatings, vol. 167, p. 106861, doi: 10.1016/j.porgcoat.2022.106861, iun. 2022.
[29]. Wang W., Yu B., Zhang Y., Peng M., Fully aminated rigidrod aramid reinforced high strength epoxy resin and its composite with carbon fibers, Composites Science and Technology, vol. 221, p. 109324, doi: 10.1016/j.compscitech.2022.109324, apr. 2022.
[30]. Varganici C., et al., Semi–interpenetrating networks based on epoxy resin and oligophosphonate: Comparative effect of three hardeners on the thermal and fire properties, Materials & Design, vol. 212, p. 110237, doi: 10.1016/j.matdes.2021.110237, dec. 2021.
[31]. Abd El-Rahman M., Yassien K. M., Yassene A. A. M., Effect of gamma irradiation on the optical properties of epoxy resin thin films, Optik, vol. 183, p. 962-970, doi: 10.1016/j.ijleo.2018.12.182, apr. 2019.
[32]. Kanchanomai C., Thammaruechuc A., Effects of stress ratio on fatigue crack growth of thermoset epoxy resin, Polymer Degradation and Stability, vol. 94, nr. 10, p. 1772-1778, doi: 10.1016/j.polymdegradstab.2009.06.012, oct. 2009.
[33]. Ruan K., Zhong X., Shi X., Dang J., Gu J., Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review, Materials Today Physics, vol. 20, p. 100456, doi: 10.1016/j.mtphys.2021.100456, sep. 2021.
[34]. An X., Ding Y., Xu Y., Zhu J., Wei C., Pan X., Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites, Reactive and Functional Polymers, vol. 172, p. 105189, doi: 10.1016/j.reactfunctpolym.2022.105189, mar. 2022.
[35]. Wang Y., Wang C., Zhou S., Liu K., Influence of cationic epoxy resin type on electrophoretic deposition effect on repair of rust-cracked reinforced concrete, Construction and Building Materials, vol. 324, p. 126714, doi: 10.1016/j.conbuildmat.2022.126714, mar. 2022.
[36]. Cui M., Qing Y., Yang Y., Long C., Liu C., Nanofunctionalized composite-crosslinked epoxy resin for ecofriendly and robust superhydrophobic coating against contaminants, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 633, p. 127914, doi: 10.1016/j.colsurfa.2021.127914, ian. 2022.
[37]. Zhang W., Yin L., Zhao M., Tan Z., Li G., Rapid and nondestructive quality verification of epoxy resin product using ATRFTIR spectroscopy coupled with chemometric methods, Microchemical Journal, vol. 168, p. 106397, doi: 10.1016/j.microc.2021.106397, sep. 2021.
[38]. Sawicz-Kryniger K., et al., Performance of FPT, FTIR and DSC methods in cure monitoring of epoxy resins, European Polymer Journal, vol. 162, p. 110933, doi: 10.1016/j.eurpolymj.2021.110933, ian. 2022.
[39]. Tabatabaeian M., Khaloo A., Khaloo H., An innovative high performance pervious concrete with polyester and epoxy resins, Construction and Building Materials, vol. 228, p. 116820, doi: 10.1016/j.conbuildmat.2019.116820, dec. 2019.
[40]. Bhadra S., Nair S., Tailor-made one-part epoxy resin for tire compound to improve ride and handling and reduce rolling resistance, Materials Today: Proceedings, vol. 62, p. 7002-7006, doi: 10.1016/j.matpr.2021.12.544, 2022.
[41]. Feng Q.-K., et al., Particle packing theory guided multiscale alumina filled epoxy resin with excellent thermal and dielectric performances, Journal of Materiomics, vol. 8, no. 5, p. 1058-1066, doi: 10.1016/j.jmat.2022.02.008, sep. 2022.
[42]. Qian Z., et al., Bio-based epoxy resins derived from diphenolic acid via amidation showing enhanced performance and unexpected autocatalytic effect on curing, Chemical Engineering Journal, vol. 435, p. 135022, doi: 10.1016/j.cej.2022.135022, mai 2022.
[43]. Vidil T., Tournilhac F., Musso S., Robisson A., Leibler L., Control of reactions and network structures of epoxy thermosets, Progress in Polymer Science, vol. 62, p. 126-179, doi: 10.1016/j.progpolymsci.2016.06.003, nov. 2016.
[44]. Tonozuka Y., Shohji I., Koyama S., Hokazono H., Degradation Behaviors of Adhesion Strength between Epoxy Resin and Copper Under Aging at High Temperature, Procedia Engineering, vol. 184, p. 648-654, doi: 10.1016/j.proeng.2017.04.132, 2017.
[45]. Chen J.-H., Lu J.-H., Pu X.-L., Chen L., Wang Y.-Z., Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification, Chemosphere, vol. 294, p. 133778, doi: 10.1016/j.chemosphere.2022.133778, mai 2022.
[46]. Gonçalves F. A. M. M., Ferreira P., Alves P., Synthesis and characterization of itaconic-based epoxy resin: Chemical and thermal properties of partially biobased epoxy resins, Polymer, vol. 235, p. 124285, doi: 10.1016/j.polymer.2021.124285, nov. 2021.
[47]. Long Y., et al., Skin-core structure of thermally aged epoxy resin: Roles of oxidation and re-crosslinking, Polymer Degradation and Stability, vol. 193, p. 109743, doi: 10.1016/j.polymdegradstab.2021.109743, nov. 2021.
[48]. Zhu T., Lu C., Lu X., Zhi J., Song Y., Curing process optimization and mechanical properties improvement of epoxy resin copolymer modified by epoxy-terminated hyperbranched polyether sulfone, Polymer, vol. 241, p. 124535, doi: 10.1016/j.polymer.2022.124535, feb. 2022.
[49]. Kishi H., Matsuda S., Imade J., Shimoda Y., Nakagawa T., Furukawa Y., The effects of the toughening mechanism and the molecular weights between cross-links on the fatigue resistance of epoxy polymer blends, Polymer, vol. 223, p. 123712, doi: 10.1016/j.polymer.2021.123712, mai 2021.
[50]. Anagnostopoulos C. A., Dimitriadi M., Konstantinidis D., Static and cyclic behaviour of epoxy resin and bentonite-grouted sands, Transportation Geotechnics, vol. 33, p. 100725, doi: 10.1016/j.trgeo.2022.100725, mar. 2022.
[51]. Peng Y.-J., He X., Wu Q., Sun P.-C., Wang C.-J., Liu X.-Z., A new recyclable crosslinked polymer combined polyurethane and epoxy resin, Polymer, vol. 149, p. 154-163, doi: 10.1016/j.polymer.2018.06.082, aug. 2018.
[52]. Yuksel O., Sandberg M., Baran I., Ersoy N., Hattel J. H., Akkerman R., Material characterization of a pultrusion specific and highly reactive polyurethane resin system: Elastic modulus, rheology, and reaction kinetics, Composites Part B: Engineering, vol. 207, p. 108543, doi: 10.1016/j.compositesb.2020.108543, feb. 2021.
[53]. Chen L., Chen S., Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin, Progress in Organic Coatings, vol. 49, nr. 3, p. 252-258, doi: 10.1016/j.porgcoat.2003.10.010, apr. 2004.
[54]. Malucelli G., Priola A., Ferrero F., Quaglia A., Frigione M., Carfagna C., Polyurethane resin-based adhesives: curing reaction and properties of cured systems, International Journal of Adhesion and Adhesives, vol. 25, no. 1, p. 87-91, doi: 10.1016/j.ijadhadh.2004.04.003, feb. 2005.
[55]. Mayer P., Dmitruk A., Kaczmar J. W., Adhesion of functional layers based on epoxy and polyurethane resins for aluminum substrate, International Journal of Adhesion and Adhesives, vol. 109, p. 102899, doi: 10.1016/j.ijadhadh.2021.102899, sep. 2021.
[56]. Jia Q., Zheng M., Chen H., Shen R., Morphologies and properties of polyurethane/epoxy resin interpenetrating network nanocomposites modified with organoclay, Materials Letters, vol. 60, no. 9-10, p. 1306-1309, doi: 10.1016/j.matlet.2005.11.018, mai 2006.
[57]. Valentino R., Romeo E., Stevanoni D., An experimental study on the mechanical behaviour of two polyurethane resins used for geotechnical applications, Mechanics of Materials, vol. 71, p. 101-113, doi: 10.1016/j.mechmat.2014.01.007, apr. 2014.
[58]. Varganici C.-D., Rosu L., Rosu D., Simionescu B. C., Miscibility studies of some semi-interpenetrating polymer networks based on an aromatic polyurethane and epoxy resin, Composites Part B: Engineering, vol. 50, p. 273-278, doi: 10.1016/j.compositesb.2013.02.005, iul. 2013.
[59]. Yong Q., Liao B., Huang J., Guo Y., Liang C., Pang H., Preparation and characterization of a novel low gloss waterborne polyurethane resin, Surface and Coatings Technology, vol. 341, p. 78-85, doi: 10.1016/j.surfcoat.2018.01.012, mai 2018.
[60]. Peng Y.-J., He X., Wu Q., Sun P.-C., Wang C.-J., Liu X.-Z., A new recyclable crosslinked polymer combined polyurethane and epoxy resin, Polymer, vol. 149, p. 154-163, doi: 10.1016/j.polymer.2018.06.082, aug. 2018.
[61]. Verdolotti L., et al., “Aerogel-like” polysiloxanepolyurethane hybrid foams with enhanced mechanical and thermalinsulating properties, Composites Science and Technology, vol. 213, p. 108917, doi: 10.1016/j.compscitech.2021.108917, sep. 2021.
[62]. Xu L., Li X., Jiang F., Yu X., Wang J., Xiao F., Thermosetting characteristics and performances of polyurethane material on airport thin-overlay, Construction and Building Materials, vol. 344, p. 128252, doi: 10.1016/j.conbuildmat.2022.128252, aug. 2022.
[63]. Banna M. H., Shirokoff J., Molgaard J., Effects of two aqueous acidic solutions on polyester and bisphenol A epoxy vinyl ester resins, Materials Science and Engineering: A, vol. 528, no. 4-5, p. 2137-2142, doi: 10.1016/j.msea.2010.11.049, feb. 2011.
[64]. Abral H., et al., Improving impact, tensile and thermal properties of thermoset unsaturated polyester via mixing with thermoset vinyl ester and methyl methacrylate, Polymer Testing, vol. 81, p. 106193, doi: 10.1016/j.polymertesting.2019.106193, ian. 2020.
[65]. Ittner Mazali C. A., Felisberti M. I., Vinyl ester resin modified with silicone-based additives: III. Curing kinetics, European Polymer Journal, vol. 45, nr. 8, p. 2222-2233, doi: 10.1016/j.eurpolymj.2009.05.022, aug. 2009.
[66]. Gautam V., Kumar A., Sharma A., Kumar A., Kumar D., Tribological behaviour of hybrid reinforced vinyl ester based functionally graded materials, Materials Today: Proceedings, vol. 44, p. 4682-4688, doi: 10.1016/j.matpr.2020.11.023, 2021.
[67]. Dev S., Shah P. N., Zhang Y., Ryan D., Hansen C. J., Lee Y., Synthesis and mechanical properties of flame retardant vinyl ester resin for structural composites, Polymer, vol. 133, p. 20-29, doi: 10.1016/j.polymer.2017.11.017, dec. 2017.
[68]. Yadav S. K., Schmalbach K. M., Kinaci E., Stanzione J. F., Palmese G. R., Recent advances in plant-based vinyl ester resins and reactive diluents, European Polymer Journal, vol. 98, p. 199-215, doi: 10.1016/j.eurpolymj.2017.11.002, ian. 2018.
[69]. Adibzadeh E., Mirabedini S. M., Behzadnasab M., Farnood R. R., A novel two-component self-healing coating comprising vinyl ester resin-filled microcapsules with prolonged anticorrosion performance, Progress in Organic Coatings, vol. 154, p. 106220, doi: 10.1016/j.porgcoat.2021.106220, mai 2021.
[70]. Scott T. F., Cook W. D., Forsythe J. S., Effect of the degree of cure on the viscoelastic properties of vinyl ester resins, European Polymer Journal, vol. 44, nr. 10, p. 3200-3212, doi: 10.1016/j.eurpolymj.2008.07.009, oct. 2008.
[71]. Sultania M., Rai J. S. P., Srivastava D., Studies on the synthesis and curing of epoxidized novolac vinyl ester resin from renewable resource material, European Polymer Journal, vol. 46, nr. 10, p. 2019-2032, doi: 10.1016/j.eurpolymj.2010.07.014, oct. 2010.
[72]. Tu R., Sodano H. A., Additive manufacturing of highperformance vinyl ester resin via direct ink writing with UVthermal dual curing, Additive Manufacturing, vol. 46, p. 102180, doi: 10.1016/j.addma.2021.102180, oct. 2021.
[73]. Arrieta J. S., Richaud E., Fayolle B., Nizeyimana F., Thermal oxidation of vinyl ester and unsaturated polyester resins, Polymer Degradation and Stability, vol. 129, p. 142-155, doi: 10.1016/j.polymdegradstab.2016.04.003, iul. 2016.
[74]. Ganesh Gupta K. B. N. V. S., Hiremath M. M., Ray B. C., Prusty R. K., Improved mechanical responses of GFRP composites with epoxy-vinyl ester interpenetrating polymer network, Polymer Testing, vol. 93, p. 107008, doi: 10.1016/j.polymertesting.2020.107008, ian. 2021.
[75]. Sousa J. M., Garrido M., Correia J. R., Cabral-Fonseca S., Hygrothermal ageing of pultruded GFRP profiles: Comparative study of unsaturated polyester and vinyl ester resin matrices, Composites Part A: Applied Science and Manufacturing, vol. 140, p. 106193, doi: 10.1016/j.compositesa.2020.106193, ian. 2021.
[76]. Wang Y., et al., Network structure and properties of crosslinked bio-based epoxy resin composite: An in-silico multiscale strategy with dynamic curing reaction process, Giant, vol. 7, p. 100063, doi: 10.1016/j.giant.2021.100063, aug. 2021.
[77]. Shen Z., Xia Z., Zhang Y., Characterization and properties of epoxy resin (E-20) modified with silicone intermediate RSN-6018, Progress in Organic Coatings, vol. 114, p. 115-122, doi: 10.1016/j.porgcoat.2017.10.014, ian. 2018.
[78]. Saludung A., Azeyanagi T., Ogawa Y., Kawai K., Alkali leaching and mechanical performance of epoxy resin-reinforced geopolymer composite, Materials Letters, vol. 304, p. 130663, doi: 10.1016/j.matlet.2021.130663, dec. 2021.
[79]. Alia C., Jofre-Reche J. A., Suárez J. C., Arenas J. M., Martín-Martínez J. M., Characterization of the chemical structure of vinyl ester resin in a climate chamber under different conditions of degradation, Polymer Degradation and Stability, vol. 153, p. 88-99, doi: 10.1016/j.polymdegradstab.2018.04.014, iul. 2018.
[80]. Yang X., et al., Fabrication of UV-curable solvent-free epoxy modified silicone resin coating with high transparency and low volume shrinkage, Progress in Organic Coatings, vol. 129, p. 96-100, doi: 10.1016/j.porgcoat.2019.01.005, apr. 2019.
[81]. Obande W., Gruszka W., Garden J. A., Wurzer C., Ó Brádaigh C. M., Ray D., Enhancing the solvent resistance and thermomechanical properties of thermoplastic acrylic polymers and composites via reactive hybridisation”, Materials & Design, vol. 206, p. 109804, doi: 10.1016/j.matdes.2021.109804, aug. 2021.
[82]. Luo D., Wu C., Yan M., Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance”, Journal of Magnetism and Magnetic Materials, vol. 452, p. 5-9, doi: 10.1016/j.jmmm.2017.12.005, apr. 2018.
[83]. Wei Y.-Y., An S.-S., Sun S., Jiang Y., Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 618, p. 126284, doi: 10.1016/j.colsurfa.2021.126284, iun. 2021.
[84]. Wang X.-L., et al., Recycling waste thermosetting unsaturated polyester resins into oligomers for preparing amphiphilic aerogels, Waste Management, vol. 126, p. 89-96, doi: 10.1016/j.wasman.2021.03.002, mai 2021.
[85]. Zheng C., Wang G., Chu Y., Xu Y., Qiu M., Xu M., RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 370, p. 73-78, doi: 10.1016/j.nimb.2016.01.014, mar. 2016.
[86]. Zhao H., Xu S., Guo A., Li J., Liu D., The Curing Kinetics Analysis of Four Epoxy Resins Using a Diamine Terminated Polyether as Curing Agent, Thermochimica Acta, vol. 702, p. 178987, doi: 10.1016/j.tca.2021.178987, aug. 2021.
[87]. Dave P. N., Patel N. N., Synthesis, properties and applications of interacting blends of acrylated novalac epoxy resin based poly(ester-amide)s and vinyl ester, Journal of Saudi Chemical Society, vol. 20, p. S231–S235, doi: 10.1016/j.jscs.2012.10.006, sep. 2016.
[88]. Ling Y., Luo J., Heng Z., Chen Y., Zou H., Liang M., Synthesis of a comb-like silicone-epoxy co-polymer with high thermal stability and mechanical properties for ablative materials, Reactive and Functional Polymers, vol. 157, p. 104742, doi: 10.1016/j.reactfunctpolym.2020.104742, dec. 2020.
[89]. Li A., et al., Study on preparation and properties of superhydrophobic surface of RTV silicone rubber, Journal of Materials Research and Technology, vol. 11, p. 135-143, doi: 10.1016/j.jmrt.2020.12.074, mar. 2021.
[90]. Hu Q., et al., Study on Modification of Room Temperature Vulcanized Silicone Rubber by Microencapsulated Phase Change Material, Journal of Energy Storage, vol. 41, p. 102842, doi: 10.1016/j.est.2021.102842, sep. 2021.
[91]. Gohel G., Bhudolia S. K., Elisetty S. B. S., Leong K. F., Gerard P., Development and impact characterization of acrylic thermoplastic composite bicycle helmet shell with improved safety and performance, Composites Part B: Engineering, vol. 221, p. 109008, doi: 10.1016/j.compositesb.2021.109008, sep. 2021.
[92]. Zhu Q., Wang Z., Zeng H., Yang T., Wang X., Effects of graphene on various properties and applications of silicone rubber and silicone resin, Composites Part A: Applied Science and Manufacturing, vol. 142, p. 106240, doi: 10.1016/j.compositesa.2020.106240, mar. 2021.
[93]. Joseph V. S., et al., Silicone/epoxy hybrid resins with tunable mechanical and interfacial properties for additive manufacture of soft robots, Applied Materials Today, vol. 22, p. 100979, doi: 10.1016/j.apmt.2021.100979, mar. 2021.
[94]. Chen D., et al., Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using Vinyl-POSS derivatives as cross linking agents, Polymer, vol. 51, nr. 17, p. 3867-3878, doi: 10.1016/j.polymer.2010.06.028, aug. 2010.
[95]. Katiyar J. K., Mohammed A. S., Physical, tribological and mechanical properties of polymer composite coating on silicon wafer, Tribology International, vol. 165, p. 107307, doi: 10.1016/j.triboint.2021.107307, ian. 2022.
[96]. Guan W., et al., Novel strategy to improve the tribological property of polymer: In-situ growing amorphous carbon coating on the surface, Applied Surface Science, vol. 505, p. 144626, doi: 10.1016/j.apsusc.2019.144626, mar. 2020.
[97]. Bharadwaja K., Srinivasa Rao S., Baburao T., Epoxy/SiO2 nanocomposite mechanical properties and tribological performance, Materials Today: Proceedings, p. S2214785321078974, doi: 10.1016/j.matpr.2021.12.172, dec. 2021.
[98]. Shin D.-G., Kim T.-H., Kim D.-E., Assessment of nanoscale tribological and mechanical properties of flexible transparent polymers based on atomic force microscopy, CIRP Annals, vol. 68, no. 1, p. 599-602, doi: 10.1016/j.cirp.2019.04.036, 2019.
[99]. Nunez E. E., Gheisari R., Polycarpou A. A., Tribology review of blended bulk polymers and their coatings for high-load bearing applications, Tribology International, vol. 129, p. 92-111, doi: 10.1016/j.triboint.2018.08.002, ian. 2019.
[100]. Avalle M., Romanello E., Tribological characterization of modified polymeric blends, Procedia Structural Integrity, vol. 8, p. 239-255, doi: 10.1016/j.prostr.2017.12.026, 2018.
Published
2022-12-15
How to Cite
1.
DRĂGHICI SM, DĂNĂILĂ (ȚÎCĂU) I, APARECI (GÎRNEȚ) T, SĂRACU G, PĂDURARU I, BRIA V, CÎRCIUMARU A, GOROVEI M-C. Modified Thermosets – A Review. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2022 [cited 26Dec.2024];45(4):72-0. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/5822
Section
Articles

Most read articles by the same author(s)