A Review on Modified Polymers and Their Composites
Abstract
The main objective of this paper is to realise a review on fundamental research regarding the development of new and efficient methods to determine the mechanical, thermal, tribological, and thermo-mechanical properties of composite materials, analysing the results obtained through various graphs and diagrams accompanied by demonstrations and explanations from the specialized literature. Developing new materials or improving the properties of existing materials has been and is a concern of researchers. The chemistry of complex combinations represents one of the most important fields of scientific research, both in terms of theoretical investigations and practical applications. The interest shown towards complex combinations is justified by the contribution brought by the accumulation of knowledge about inorganic chemicals, polymers as well as about epoxy resins and polyvinyl ester, of course also about the design, formation and analysis through mechanical tests (compression, tension, three-point bending), thermal, tribological of composite materials modified with various modifying agents.
Downloads
References
[2]. Yao D., et al., Composition regulation of composite materials in laser powder bed fusion additive manufacturing, Powder Technology, vol. 408, p. 117795, doi: 10.1016/j.powtec.2022.117795, aug. 2022.
[3]. Mohd Nasir N. H., Usman F., Saggaf A. Saloma, Development of composite material from Recycled Polyethylene Terephthalate and fly ash: Four decades progress review, Current Research in Green and Sustainable Chemistry, vol. 5, p. 100280, doi: 10.1016/j.crgsc.2022.100280, 2022.
[4]. Yurrita N., et al., Composite material incorporating protective coatings for photovoltaic cell encapsulation, Solar Energy Materials and Solar Cells, vol. 245, p. 111879, doi: 10.1016/j.solmat.2022.111879, sep. 2022.
[5]. Soni A., Chakraborty S., Kumar Das P., Kumar Saha A., Materials selection of reinforced sustainable composites by recycling waste plastics and agro-waste: An integrated multicriteria decision making approach, Construction and Building Materials, vol. 348, p. 128608, doi: 10.1016/j.conbuildmat.2022.128608, sep. 2022.
[6]. Ambaye T. G., Vaccari M., Prasad S., van Hullebusch E. D., Rtimi S., Preparation and applications of chitosan and cellulose composite materials, Journal of Environmental Management, vol. 301, p. 113850, doi: 10.1016/j.jenvman.2021.113850, ian. 2022.
[7]. Liu M., Chen B., Zhang D., Wang Y., Kan P., Numerical studies on effective thermal conductivities of the glass/polyimide composite materials under the conditions of conduction & radiation, International Journal of Heat and Mass Transfer, vol. 180, p. 121764, doi: 10.1016/j.ijheatmasstransfer.2021.121764, dec. 2021.
[8]. Karem M. R., Salih A. I., Synthesis and characterization of epoxy and natural fiber composite material, Materials Today: Proceedings, vol. 61, p. 925-929, doi: 10.1016/j.matpr.2021.10.101, 2022.
[9]. Li C., Li Q., Lu X., Ge R., Du Y., Xiong Y., Inorganic salt based shape-stabilized composite phase change materials for medium and high temperature thermal energy storage: Ingredients selection, fabrication, microstructural characteristics and development, and applications, Journal of Energy Storage, vol. 55, p. 105252, doi: 10.1016/j.est.2022.105252, nov. 2022.
[10]. Chellamuthu K., Sivakumar M., Parthiban N., Simulations of composite material blended with thermoplasitc and jute fabric, Materials Today: Proceedings, p. S221478532204891X, doi: 10.1016/j.matpr.2022.07.268, iul. 2022.
[11]. Januszewski R., Orwat B., Dutkiewicz M., Kownacki I., Structurally-unique polymeric materials obtained through catalytic post-polymerization protocols, Materials Today Chemistry, vol. 26, p. 101073, doi: 10.1016/j.mtchem.2022.101073, dec. 2022.
[12]. Allen N. S., Edge M., Hussain S., Perspectives on yellowing in the degradation of polymer materials: inter-relationship of structure, mechanisms and modes of stabilisation, Polymer Degradation and Stability, vol. 201, p. 109977, doi: 10.1016/j.polymdegradstab.2022.109977, iul. 2022.
[13]. Zhang J., et al., A review of epoxy-based composite materials: Synthesis, structure and application for electromagnetic wave absorption, Journal of Alloys and Compounds, vol. 922, p. 166096, doi: 10.1016/j.jallcom.2022.166096, nov. 2022.
[14]. Sun P., Qin B., Xu J.-F., Zhang X., Supramonomers for controllable supramolecular polymerization and renewable supramolecular polymeric materials, Progress in Polymer Science, vol. 124, p. 101486, doi: 10.1016/j.progpolymsci.2021.101486, ian. 2022.
[15]. Chae K., et al., Mechanical failures of Two-Dimensional materials on polymer substrates, Applied Surface Science, vol. 605, p. 154736, doi: 10.1016/j.apsusc.2022.154736, dec. 2022.
[16]. Banu K. S., Dutta T., Majumdar G., Effect of Contamination on Characteristics of Plastic and Polymeric Materials, Encyclopedia of Materials: Plastics and Polymers, Elsevier, p. 623-636, doi: 10.1016/B978-0-12-820352-1.00210-8, 2022.
[17]. Naito M., et al., Applicability of composite materials for space radiation shielding of spacecraft, Life Sciences in Space Research, vol. 31, p. 71-79, doi: 10.1016/j.lssr.2021.08.004, nov. 2021.
[18]. Tuttle M. E., Structural analysis of polymeric composite materials, New York: Marcel Dekker, 2004.
[19]. Vijay Kumar V., Ramakrishna S., Rajendran S., Surendran S., Enhancing the material properties of carbon fiber epoxy composite by incorporating electrospun polyacrylonitrile nanofibers, Materials Today: Proceedings, p. S2214785322029959, doi: 10.1016/j.matpr.2022.04.818, mai 2022.
[20]. Rana S., Singh V., Singh B., Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy, iScience, vol. 25, nr. 2, p. 103748, doi: 10.1016/j.isci.2022.103748, feb. 2022.
[21]. Solazzi L., Vaccari M., Reliability design of a pressure vessel made of composite materials, Composite Structures, vol. 279, p. 114726, doi: 10.1016/j.compstruct.2021.114726, 2022.
[22]. Ahsan Feroz A., Harshit D. Chawla, Kumar R., To study and analyze the design of drive shafts for automobiles using composite material through empirical review on literature, Materials Today: Proceedings, vol. 56, p. 3820-3822, doi: 10.1016/j.matpr.2022.01.309, 2022.
[23]. Yurkov G. Y., et al., Composite materials based on a ceramic matrix of polycarbosilane and iron-containing nanoparticles, Ceramics International, p. S0272884222032722, doi: 10.1016/j.ceramint.2022.09.096, sep. 2022.
[24]. Blachowicz T., Grzybowski J., Ehrmann A., Influence of agglomerations on magnetic properties of polymer matrices filled with magnetic nanoparticles, Materials Today: Proceedings, p. S2214785322050039, doi: 10.1016/j.matpr.2022.07.362, 2022.
[25]. Arkas M., et al., Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices, Reactive and Functional Polymers, vol. 174, p. 105238, doi: 10.1016/j.reactfunctpolym.2022.105238, 2022.
[26]. Apryatina K. V., Salomatina E. V., Sologubov S. S., Markin A. V., Smirnova L. A., Specific features of thermal properties of polymer composites containing conductive nanoparticles in non-conductive polymer matrices, Thermochimica Acta, vol. 705, p. 179036, doi: 10.1016/j.tca.2021.179036, 2021.
[27]. Shakeel A., et al., Polymer based nanocomposites: A strategic tool for detection of toxic pollutants in environmental matrices, Chemosphere, vol. 303, p. 134923, doi: 10.1016/j.chemosphere.2022.134923, sep. 2022.
[28]. Brandner S., Becker T., Jekle M., Impact of the particlepolymer interface on small- and large-scale deformation response in protein- and carbohydrate-based food matrices, International Journal of Biological Macromolecules, vol. 191, p. 51-59, doi: 10.1016/j.ijbiomac.2021.09.048, nov. 2021.
[29]. Ventura-Cruz S., Tecante A., Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices, Food Hydrocolloids, vol. 118, p. 106771, doi: 10.1016/j.foodhyd.2021.106771, sep. 2021.
[30]. Bokka S., Chowdhury A., Reviewing the Potential of Novel Nanofillers in Polymer Matrices for Advanced Technological Applications, Encyclopedia of Materials: Plastics and Polymers, Elsevier, p. 662-698, doi: 10.1016/B978-0-12-820352-1.00132-2, 2022.
[31]. Amulya K., Katakojwala R., Ramakrishna S., Venkata Mohan S., Low carbon biodegradable polymer matrices for sustainable future, Composites Part C: Open Access, vol. 4, p. 100111, doi: 10.1016/j.jcomc.2021.100111, mar. 2021.
[32]. Vom Saal F. S., Nagel S. C., Coe B. L., Angle B. M., Taylor J. A., The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity, Mol Cell Endocrinol, vol. 354, no. 1-2, p. 74-84, doi: 10.1016/j.mce.2012.01.001, 2012.
[33]. Idumah C. I., Progress in polymer nanocomposites for bone regeneration and engineering, Polymers and Polymer Composites, vol. 29, no. 5, p. 509-527, doi: 10.1177/0967391120913658, 2021.
[34]. Pradeep S. A., Iyer R. K., Kazan H., Pilla S., Automotive Applications of Plastics: Past, Present, and Future, Applied Plastics Engineering Handbook, Elsevier, p. 651-673, doi: 10.1016/B978-0-323-39040-8.00031-6, 2017.
[35]. Brydson J. A., Plastics materials, 7th ed., Oxford,; Boston: Butterworth-Heinemann, 1999.
[36]. Xu G., Wang Q., Chemically recyclable polymer materials: polymerization and depolymerization cycles, Green Chem., vol. 24, no. 6, p. 2321-2346, doi: 10.1039/D1GC03901F, 2022.
[37]. Loganathan N. N., Perumal V., Pandian B. R., Atchudan R., Edison T. N. J. I., Ovinis M., Recent studies on polymeric materials for supercapacitor development, Journal of Energy Storage, vol. 49, p. 104149, doi: 10.1016/j.est.2022.104149, 2022.
[38]. García-Collado A., Blanco J. M., Gupta M. K., Dorado-Vicente R., Advances in polymers based Multi-Material Additive-Manufacturing Techniques: State-of-art review on properties and applications, Additive Manufacturing, vol. 50, p. 102577, doi: 10.1016/j.addma.2021.102577, feb. 2022.
[39]. Olaitan Ayeleru O., Apata Olubambi P., Concept of selfhealing in polymeric materials, Materials Today: Proceedings, vol. 62, p. S158-S162, doi: 10.1016/j.matpr.2022.04.811, 2022.
[40]. Maqbool M., Aftab W., Bashir A., Usman A., Guo H., Bai S., Engineering of polymer-based materials for thermal management solutions, Composites Communications, vol. 29, p. 101048, doi: 10.1016/j.coco.2021.101048, 2022.
[41]. Holkem A. P., Iop G. D., Bitencourt G. R., Flores E. M. M., Mesko M. F., Mello P. A., Combining microwave and ultraviolet energy for sample preparation of polymer-based materials for further halogen determination, Advances in Sample Preparation, vol. 4, p. 100038, doi: 10.1016/j.sampre.2022.100038, oct. 2022.
[42]. Rasheed T., Naveed A., Chen J., Raza B., Wang J., Revisiting the role of polymers as renewable and flexible materials for advanced batteries, Energy Storage Materials, vol. 45, p. 1012-1039, doi: 10.1016/j.ensm.2021.10.037, 2022.
[43]. Marieta C., Remiro P. M., Garmendia G., Harismendy I., Mondragon I., AFM approach toward understanding morphologies in toughened thermosetting matrices, European Polymer Journal, vol. 39, nr. 10, p. 1965-1973, doi: 10.1016/S0014-3057(03)00113-7, oct. 2003.
[44]. Gnädinger F., Middendorf P., Fox B., Interfacial shear strength studies of experimental carbon fibres, novel thermosetting polyurethane and epoxy matrices and bespoke sizing agents, Composites Science and Technology, vol. 133, p. 104-110, doi: 10.1016/j.compscitech.2016.07.029, sep. 2016.
[45]. Gebhardt M., Manolakis I., Kalinka G., Deubener J., Chakraborty S., Meiners D., Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix composites, Composites Communications, vol. 28, p. 100974, doi: 10.1016/j.coco.2021.100974, dec. 2021.
[46]. John B., Reghunadhan Nair C. P., Thermosetting polymer based syntactic foams: an overview, Handbook of Thermoset Plastics, Elsevier, p. 801-832, doi: 10.1016/B978-0-12-821632-3.00020-8, 2022.
[47]. Çakir M., Akin E., Characterization of carbon fiberreinforced thermoplastic and thermosetting polyimide matrix composites manufactured by using various synthesized PI precursor resins, Composites Part B: Engineering, vol. 231, p. 109559, doi: 10.1016/j.compositesb.2021.109559, feb. 2022.
[48]. Restaino A. J., James D. B., Ko F. K., Beaumont P. W. R., Wells J. K., Thermosetting Resin Matrices, Concise Encyclopedia of Composite Materials, Elsevier, p. 289-309, doi: 10.1016/B978-0-08-042300-5.50028-5, 1994.
[49]. Wippl J., Schmidt H.-W., Giesa R., High Temperature Thermosets with a Low Coefficient of Thermal Expansion, Macromol. Mater. Eng., vol. 290, no. 7, p. 657-668, doi: 10.1002/mame.200500120, 2005.
[50]. Yang S., et al., Synthesis of tung oil-based vinyl ester resin and its application for anti-corrosion coatings, Progress in Organic Coatings, vol. 170, p. 106967, doi: 10.1016/j.porgcoat.2022.106967, sep. 2022.
[51]. Zhang X., Zhang W., Pan Y.-T., Qian L., Qin Z., Zhang W., Synthesis and performance of intrinsically flame-retardant, low-smoke biobased vinyl ester resin, Reactive and Functional Polymers, vol. 171, p. 105158, doi: 10.1016/j.reactfunctpolym.2021.105158, feb. 2022.
[52]. Huang Z., Deng Z., Dong C., Fan J., Ren Y., A closed-loop recycling process for carbon fiber reinforced vinyl ester resin composite, Chemical Engineering Journal, vol. 446, p. 137254, doi: 10.1016/j.cej.2022.137254, oct. 2022.
[53]. Chen B., et al., A universal strategy toward flame retardant epoxy resin with ultra-tough and transparent properties, Polymer Degradation and Stability, p. 110132, doi: 10.1016/j.polymdegradstab.2022.110132, sep. 2022.
[54]. Sun Q., Feng Y., Guo J., Wang C., High performance epoxy resin with ultralow coefficient of thermal expansion cured by conformation-switchable multi-functional agent, Chemical Engineering Journal, vol. 450, p. 138295, doi: 10.1016/j.cej.2022.138295, dec. 2022.
[55]. Wang Y., Wang C., Zhou S., Liu K., Effect of amination rate and neutralization degree of cationic epoxy resin on the repair effect of electrophoretic deposition, Progress in Organic Coatings, vol. 172, p. 107069, doi: 10.1016/j.porgcoat.2022.107069, nov. 2022.
[56]. Yu D., et al., Preparation and performance of pervious concrete with wood tar-formaldehyde-modified epoxy resins, Construction and Building Materials, vol. 350, p. 128819, doi: 10.1016/j.conbuildmat.2022.128819, oct. 2022.
[57]. Zhao Y., Kikugawa G., Kawagoe Y., Shirasu K., Okabe T., Molecular-scale investigation on relationship between thermal conductivity and the structure of crosslinked epoxy resin, International Journal of Heat and Mass Transfer, vol. 198, p. 123429, doi: 10.1016/j.ijheatmasstransfer.2022.123429, dec. 2022.
[58]. Zhi M., et al., A comprehensive review of reactive flameretardant epoxy resin: fundamentals, recent developments, and perspectives, Polymer Degradation and Stability, vol. 201, p. 109976, doi: 10.1016/j.polymdegradstab.2022.109976, 2022.
[59]. Jia C., Li J., Wang Q., Li Z., Pu L., Analysis of low-energy impact damage to epoxy resin film based on surface damage characteristics, Progress in Organic Coatings, vol. 172, p. 107147, doi: 10.1016/j.porgcoat.2022.107147, 2022.
[60]. Fiore V., Valenza A., Epoxy resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Elsevier, p. 88-121, doi: 10.1533/9780857098641.1.88, 2013.
[61]. Bachchan A. A., Das P. P., Chaudhary V., Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review, Materials Today: Proceedings, p. S2214785321019751, doi: 10.1016/j.matpr.2021.02.812, 2021.
[62]. Ascione F., Lamberti M., Napoli A., Razaqpur G., Realfonzo R., An experimental investigation on the bond behavior of steel reinforced polymers on concrete substrate, Composite Structures, vol. 181, p. 58-72, doi: 10.1016/j.compstruct.2017.08.063, 2017.
[63]. Andrew J. J., Srinivasan S. M., Arockiarajan A., Dhakal H. N., Parameters influencing the impact response of fiberreinforced polymer matrix composite materials: A critical review, Composite Structures, vol. 224, p. 111007, doi: 10.1016/j.compstruct.2019.111007, sep. 2019.
[64]. Azimpour-Shishevan F., Akbulut H., Mohtadi-Bonab M. A., Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites, Polymer Testing, vol. 90, p. 106745, doi: 10.1016/j.polymertesting.2020.106745, 2020.
[65]. Birsan I. G., Bria V., Bunea M., Circiumaru A., An Experimental Investigation of Thermal Properties of Fabric Reinforced Epoxy Composites, Mater. Plast., vol. 57, no. 2, p. 159-168, doi: 10.37358/MP.20.2.5362, 2019.
[66]. Bedi H. S., Kumar S., Agnihotri P. K., Wettability of thermoplastic and thermoset polymers with carbon nanotube grafted carbon fiber, Materials Today: Proceedings, vol. 41, p. 838-842, doi: 10.1016/j.matpr.2020.09.162, 2021.
[67]. Benin S. R., Kannan S., Bright R. J., Jacob Moses A., A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres, Materials Today: Proceedings, vol. 33, p. 798-805, doi: 10.1016/j.matpr.2020.06.259, 2020.
[68]. Das P., Banerjee S., Das N. C., Polymer-graphene composite in aerospace engineering, Polymer Nanocomposites Containing Graphene, Elsevier, p. 683-711, doi: 10.1016/B978-0-12-821639-2.00001-X, 2022.
[69]. Fanteria D., Lazzeri L., Panettieri E., Mariani U., Rigamonti M., Experimental characterization of the interlaminar fracture toughness of a woven and a unidirectional carbon/epoxy composite, Composites Science and Technology, vol. 142, p. 20-29, doi: 10.1016/j.compscitech.2017.01.028, apr. 2017.
[70]. Forintos N., Czigany T., Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review, Composites Part B: Engineering, vol. 162, p. 331-343, doi: 10.1016/j.compositesb.2018.10.098, apr. 2019.
[71]. Cao Y., et al., Computational parameter identification of strongest influence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer, Structures, vol. 27, p. 118-127, doi: 10.1016/j.istruc.2020.05.031, oct. 2020.
[72]. Gabriel Andrei, Dumitru Dima, Bîrsan I. G., Laurenția Andrei, Adrian Cîrciumaru, Effect of Ferrite Particles on Mechanical Behaviour of Glass Fibers Reinforced Polymer Composite, Materiale Plastice, vol. 46, no. 3, p. 284-287, 2009.
[73]. Green S. D., Matveev M. Y., Long A. C., Ivanov D., Hallett S. R., Mechanical modelling of 3D woven composites considering realistic unit cell geometry, Composite Structures, vol. 118, p. 284-293, doi: 10.1016/j.compstruct.2014.07.005, 2014.
[74]. Goli E., et al., Frontal polymerization of unidirectional carbon-fiber-reinforced composites, Composites Part A: Applied Science and Manufacturing, vol. 130, p. 105689, doi: 10.1016/j.compositesa.2019.105689, mar. 2020.
[75]. Waltham, M. A., Design and applications of nanostructured polymer blends and nanocomposite systems, 1st edition, Elsevier, 2015.
[76]. Zavyalov S., Formation and characterization of metalpolymer nanostructured composites, Solid State Ionics, vol. 147, no. 3-4, p. 415-419, doi: 10.1016/S0167-2738(02)00038-3, 2002.
[77]. Yang P., Ren M., Chen K., Liang Y., Lü Q.-F., Zhang T., Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins, Materials Today Communications, vol. 19, p. 186-195, doi: 10.1016/j.mtcomm.2019.01.014, 2019.
[78]. Whang S. H., Nanostructured metals and alloys: processing, microstructure, mechanical properties and applications, Oxford: WP, Woodhead Publ, 2011.
[79]. Teran A. A., Tang M. H., Mullin S. A., Balsara N. P., Effect of molecular weight on conductivity of polymer electrolytes, Solid State Ionics, vol. 203, no. 1, p. 18-21, doi: 10.1016/j.ssi.2011.09.021, 2011.
[80]. ter Horst B., Moiemen N. S., Grover L. M., Natural polymers, Biomaterials for Skin Repair and Regeneration, Elsevier, p. 151-192, doi: 10.1016/B978-0-08-102546-8.00006-6, 2019.
[81]. Thakur T., Jaswal S., Parihar S., Gaur B., Singha A. S., Bio-based epoxy thermosets with rosin derived imidoamine curing agents and their structure-property relationships, Express Polym. Lett., vol. 14, no. 6, p. 512-529, doi: 10.3144/expresspolymlett.2020.42, 2020.
[82]. Mehnath S., Das A. K., Verma S. K., Jeyaraj M., Biosynthesized/green-synthesized nanomaterials as potential vehicles for delivery of antibiotics/drugs, Comprehensive Analytical Chemistry, vol. 94, Elsevier, p. 363-432, doi: 10.1016/bs.coac.2020.12.011, 2021.
[83]. Mishra T., Mandal P., Rout A. K., Sahoo D., A state-of-theart review on potential applications of natural fiber-reinforced polymer composite filled with inorganic nanoparticle, Composites Part C: Open Access, vol. 9, p. 100298, doi: 10.1016/j.jcomc.2022.100298, oct. 2022.
[84]. Shi Y.-C., et al., Rational design of a functionalized silicone polymer for modifying epoxy-based composites, Journal of Materials Research and Technology, vol. 19, p. 3867-3876, doi: 10.1016/j.jmrt.2022.06.086, 2022.
[85]. Hemanth B., Hanumantharaju H. G., Prashanth K. P., Venkatesha B. K., Investigation of wear characteristics of collagen fiber reinforced polymer matrix composites used for orthopaedic implants, Materials Today: Proceedings, vol. 54, p. 498-501, doi: 10.1016/j.matpr.2021.11.429, 2022.
[86]. Petraşcu O.-L., Manole R., Pascu A.-M., The behavior of composite materials based on polyurethan resin subjected to uniaxial tensile test, Materials Today: Proceedings, vol. 62, p. 2673-2678, doi: 10.1016/j.matpr.2022.05.308, 2022.
[87]. Tu R., Sodano H. A., Additive manufacturing of highperformance vinyl ester resin via direct ink writing with UVthermal dual curing, Additive Manufacturing, vol. 46, p. 102180, doi: 10.1016/j.addma.2021.102180, oct. 2021.
[88]. Barbon F. J., Moraes R. R., Isolan C. P., Spazzin A. O., Boscato N., Influence of inorganic filler content of resin luting agents and use of adhesive on the performance of bonded ceramic, The Journal of Prosthetic Dentistry, vol. 122, no. 6, p. 566.e1-566.e11, doi: 10.1016/j.prosdent.2019.09.013, dec. 2019.
[89]. Goli E., Peterson S. R., Geubelle P. H., Instabilities driven by frontal polymerization in thermosetting polymers and composites, Composites Part B: Engineering, vol. 199, p. 108306, doi: 10.1016/j.compositesb.2020.108306, oct. 2020.
[90]. Durukan O., Kahraman I., Parlevliet P., Geistbeck M., Seyhan A. T., Microfluidization, time-effective and solvent free processing of nanoparticle containing thermosetting matrix resin suspensions for producing composites with enhanced thermal properties, European Polymer Journal, vol. 85, p. 575-587, doi: 10.1016/j.eurpolymj.2016.11.012, dec. 2016.
[91]. Zhou Z., et al., Remotely fast response healing crosslinked polyurea nanocomposites with recyclability via two-step method, Composites Science and Technology, vol. 224, p. 109462, doi: 10.1016/j.compscitech.2022.109462, 2022.
[92]. Li Z., et al., Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process, Radiation Physics and Chemistry, vol. 197, p. 110166, doi: 10.1016/j.radphyschem.2022.110166, aug. 2022.
[93]. An L., Li X., Jin C., Zhao W., Shi Q., An extrinsic welding method for thermosetting composites: Strong and repeatable, Composites Part B: Engineering, vol. 245, p. 110224, doi: 10.1016/j.compositesb.2022.110224, oct. 2022.
[94]. Wang X., Nabipour H., Kan Y.-C., Song L., Hu Y., A fully bio-based, anti-flammable and non-toxic epoxy thermosetting network for flame-retardant coating applications, Progress in Organic Coatings, vol. 172, p. 107095, doi: 10.1016/j.porgcoat.2022.107095, nov. 2022.
[95]. Huang Y., et al., Polyurea as a reinforcing filler for the anticorrosion and wear-resistant application of epoxy resin, Progress in Organic Coatings, vol. 171, p. 107049, doi: 10.1016/j.porgcoat.2022.107049, oct. 2022.
[96]. Shafiei E., Kiasat M. S., A new viscoplastic model and experimental characterization for thermosetting resins, Polymer Testing, vol. 84, p. 106389, doi: 10.1016/j.polymertesting.2020.106389, apr. 2020.
[97]. Li J., et al., A multiscale model for the synthesis of thermosetting resins: From the addition reaction to cross-linked network formation, Chemical Physics Letters, vol. 720, p. 64-69, doi: 10.1016/j.cplett.2019.02.012, apr. 2019.
[98]. Hu J., et al., A novel development route for cyano-based high performance thermosetting resins via the strategy of functional group design-dicyanoimidazole resins, Polymer, vol. 203, p. 122823, doi: 10.1016/j.polymer.2020.122823, aug. 2020.
[99]. Yang F., Cong L., Li Z., Yuan J., Guo G., Tan L., Study on preparation and performance of a thermosetting polyurethane modified asphalt binder for bridge deck pavements, Construction and Building Materials, vol. 326, p. 126784, doi: 10.1016/j.conbuildmat.2022.126784, 2022.
[100]. Wang X.-L., et al., Recycling waste thermosetting unsaturated polyester resins into oligomers for preparing amphiphilic aerogels, Waste Management, vol. 126, p. 89-96, doi: 10.1016/j.wasman.2021.03.002, 2021.
[101]. Shi Y.-C., et al., Rational design of a functionalized silicone polymer for modifying epoxy-based composites, Journal of Materials Research and Technology, vol. 19, p. 3867-3876, doi: 10.1016/j.jmrt.2022.06.086, 2022.
[102]. Kumar V., Lee G. Monika, Choi J., Lee D.-J., Studies on composites based on HTV and RTV silicone rubber and carbon nanotubes for sensors and actuators, Polymer, vol. 190, p. 122221, doi: 10.1016/j.polymer.2020.122221, 2020.
[103]. Xiong Y., Shen S., Kang M., Wang Z., Lu A., Effect of fluorescence labeling on mechanical properties of silica filled silicone rubber, Polymer, vol. 208, p. 122904, doi: 10.1016/j.polymer.2020.122904, 2020.
[104]. Takahashi K., Yaginuma K., Goto T., Yokozeki T., Okada T., Takahashi T., Electrically conductive carbon fiber reinforced plastics induced by uneven distribution of polyaniline composite micron-sized particles in thermosetting matrix, Composites Science and Technology, vol. 228, p. 109642, doi: 10.1016/j.compscitech.2022.109642, 2022.
[105]. Chen D., Wu H., Wei J. S., Xu S. L., Fang Q., Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range, International Journal of Impact Engineering, vol. 163, p. 104184, doi: 10.1016/j.ijimpeng.2022.104184, 2022.
[106]. Hu J., Song Y., Ning N., Zhang L., Yu B., Tian M., An effective strategy for improving the interface adhesion of the immiscible methyl vinyl silicone elastomer/thermoplastic polyurethane blends via developing a hybrid janus particle with amphiphilic brush”, Polymer, vol. 214, p. 123375, doi: 10.1016/j.polymer.2020.123375, feb. 2021.
[107]. Xu P., et al., Pre-use interfacial shear strength prediction for fiber-reinforced thermosetting composites based on stress impedance effect of ferromagnetic microwires, Composites Part A: Applied Science and Manufacturing, vol. 152, p. 106684, doi: 10.1016/j.compositesa.2021.106684, 2022.
[108]. Voto G., Sequeira L., Skordos A. A., Formulation based predictive cure kinetics modelling of epoxy resins, Polymer, vol. 236, p. 124304, doi: 10.1016/j.polymer.2021.124304, 2021.
[109]. Fu Y., Yao X., A review on manufacturing defects and their detection of fiber reinforced resin matrix composites”, Composites Part C: Open Access, vol. 8, p. 100276, doi: 10.1016/j.jcomc.2022.100276, 2022.
[110]. Wang X., et al., Static and dynamic compressive and tensile response of highly stretchable polyurea, International Journal of Impact Engineering, vol. 166, p. 104250, doi: 10.1016/j.ijimpeng.2022.104250, 2022.