Alternative marine fuels for cleaner maritime transport

  • Carmen Gasparotti “Dunarea de Jos” University of Galati
Keywords: alternative fuels, AHP, electrolytic hydrogen, LNG, renewable resources.

Abstract

To reduce greenhouse gas (GHG) emissions, according to the vision of the International Maritime Organization (IMO), a good decision-making process is needed for the classification of alternative marine fuels considered as a solution for the decarbonization of maritime transport. The paper aims to classify two alternative fuels (Liquefied natural gas (LNG) and green hydrogen obtained by electrolysis of water, in relation to four criteria (economic, technical, environmental, and social) using the specialized literature. The evaluation of the two fuels in relation to the selected criteria was carried out from a multicriteria perspective using the Analytical Hierarchy Process (AHP) method. The obtained results have shown that LNG is the best option, currently, for maritime transport, considering the operational cost, the available infrastructure, the impact on the climate, and operational safety.

Downloads

Download data is not yet available.

References

[1] Andersson, K., Brynolf, S., Hansson, J. and Grahn, M. “Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels”. Sustainability, Vol. 12, no.9, 3623, April. 2020; https://doi.org/10.3390/su12093623
[2] Andersson, K., Salazar, C.M. “Methanol as a Marine Fuel Report, FCBI Energy”, 2015. Accessed: Nov. 23, 2023. [Online]. Available: https://www.methanol.org/wpcontent/uploads/2018/03/FCBI-Methanol-Marine-Fuel-Report-Final-English.pdf
[3] Blanc, P., M. Zafar, F. Di Martino, A. Fargere, J. Carton and B. Kolodziejczyk. “New Hydrogen Economy - Hope or Hype?”: Innovation Insights Brief, 2019.
[4] Brynolf, S., Fridell, E., Andersson, K. “Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol”, J. Clean. Prod. Vol. 74, pp. 86–95, 2014.
[5] Calderón, M., Illing, D., Veiga, J. “Facilities for bunkering of liquefied natural gas 21 Fascicle XI
The Annals of “Dunarea de Jos” University of Galati in ports”, Transportation Research Procedia Vol. 14, pp. 2431–2440, 2016.
[6] Chen, J.H., Fei, Y.J., Wan, Z. “The relationship between the development of global maritime fleets and GHG emission from shipping”. J. Environ. Manag, Vol. 242, pp. 31–39, 2019.
[7] Cheng, Y.L., Wang, S.S., Zhu, J., Gou, Y.L., Zhang, R.F., Liu, Y.M., Zhang, Y., Yu, Q., Ma, W.C., Zhou, B.. “Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance”. Atmos. Chem. Phys., Vol. 19, no. 21, pp. 3611–13626, 2019 https://doi.org/10.5194/acp-19-136112019
[8] Chi, J., and H. Yu. “Water Electrolysis Based on Renewable Energy for Hydrogen Production”. Chinese Journal of Catalysis, Vol. 39, no. 3, pp. 390–94, 2018.
[9] Chryssakis, C., Brinks, H.W., Brunelli, A.C., Fuglseth, T. P., Lande, M., Laugen, L. “LOW CARBON SHIPPING TO WARDS 2050”. Høvik, DNV GL, Norway, 2017. Accessed: Nov. 26, 2023. [Online]. Available: https://mcst-rmiusp.org/index.php/reference-librarymain?task=download.send&id=106&catid=12&m
[10] Deniz, C., Zincir, B. “Environmental and economical assessment of alternative marine fuels”. J. Clean. Prod., Vol. 113, pp. 438–449, 2016.
[11] Domínguez, R., Calderón, E. and Bustos, J. “Process Safety in Electrolytic Green Hydrogen Production”. Production Management and Process Control, Vol. 36, pp. 185–195, 2022.
[12]European Maritime Safety Agency. “Mapping safety risks for hydrogen fuelled ships”, EMSA, Lisbon, 2024. Accessed: Nov. 25, 2023. [Online]. Avilable:https://www.emsa.europa.eu/tags/144-alternative-fuels.html 22
[13] Farhana, K., Mahamude, A. S. F. Kumaran Kadirgama, K. “Comparing hydrogen fuel cost of production from various sources - a competitive analysis”. Energy Conversion and Management, Vol. 302, 2024, https://doi.org/10.1016/j.enconman.2024.118088
[14] Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., Murphy, A. “Assessment of full life-cycle air emissions of alternative shipping fuels”, J. Clean., Vol. 172, pp. 855–866, 2018, https://doi.org/10.1016/j.jclepro.2017.10.165
[15] Gore, K., Rigot-Müller, P., Coughlan, J. 2022. “Cost assessment of alternative fuels for maritime transportation in Ireland”. Transportation Research Part D:Transport and Environment, Vol. 110, pp. 1-20, 2022, https://doi.org/10.1016/j.trd.2022.103416
[16] Hansson, J., Månsson, S., Brynolf, S., Grahn, M. “Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders”, Biomass and Bioenergy, Vol. 126, pp. 159-173, 2019, https://doi.org/10.1016/j.biombioe.2019.05.008
[17] Hosseini, S. E. şi Wahid, M. A. “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development”. Renewable and Sustainable Energy Reviews, Vol. 57, pp. 850–866, 2016, https://doi.org/10.1016/j.rser.2015.12.112
[18] Horvath, S., Fasihi, M., Breyer, C. “Techno-economic analysis of a decarbonized shipping sector: technology suggestions for a fleet in 2030 and 2040”, Energy Convers. Manag, Vol. 164, pp. 230-241, 2018, DOI: 10.1016/j.enconman.2018.02.098
[19] IMO. “Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue adoption of the initial IMO strategy on reduction of GHG emissions lated to reducing GHG emissions in the shipping sector”, International Maritime Organization, 2018. Accessed: Nov. 26, 2023. [Online]. Available: https://unfccc.int/sites/default/files/resource/250_IMO
%20submission_Talanoa%20Dialogue_April%202018.pdf.
[20] IMO. “Sulphur, Oxides (SOx) and particulate matter (PM)”, Regulation 14, 2018. Accessed: Nov. 27, 2023. [Online]. Available: https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation14.aspx.
[21] IMO. “Fourth IMO GHG Study 2020 – Final Report”. International Maritime Organization, 2020. Accessed: Nov. 27, 2023. [Online]. Available: https://www.maritimecyprus.com/wpcontent/uploads/2021/03/4th-IMO-GHGStudy-2020.pdf.
[22] IMO. “Greenhouse gas emissions from shipping: waiting for concrete progress at IMO level”, 2020. Accessed: Nov. 27, 2023. [Online]. Available: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/652754/IPOL_B RI(2020)652754_EN.pdf.
[23] Jones, M.W., Peters, G.P., Gasser, T., Andrew, R.M., Schwingshack, C., Gütschow, J., Houghton, R. A., Friedlingstein, P., Pongratz, J., LeQuéré, C. “National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850”. Sci Data, Vol. 10, 155, 2023, DOI: 10.1038/s41597-023-02041-1
[24] Lanjewar Pramod B., Rao, R. V., Kale, A.V. “Assessment of alternative fuels for transportation using a hybrid graph theory and analytic hierarchy process method”, Fuel, Vol.154, pp. 9–16, 2015.
[25] Osorio-Tejada, J.L., Llera-Sastresa, E., Scarpellini, S. “A multi-criteria sustainability assessment for biodiesel and liquefied natural gas as alternative fuels in © Galati University Press, 2024 transport systems”, J. Nat. Gas Sci. Eng. Vol. 42, pp. 169–186, 2017.
[26] Oftedal, S. “The IMO GHG Strategy— Implications for Regulations and Alternative Fuels”. In Proceedings of the DNV GL Alternative Fuels online Conference, 25 September, 2019.
[27] Ren, J., Liang, H. “Measuring the sustainability of marine fuels: a fuzzy group multicriteria decision-making approach”, Transp Res D Trans Environ, Vol. 54, pp. 12–29, 2017.
[28] Ren, J. and Lützen, M. “Selection of sustainable alternative energy source for shipping: multi-criteria decision making under incomplete information”. Renew. Sustain. Energy Rev, Vol. 74, pp. 1003–1019, 2017.
[29] Saaty, T. L. “Decision-making with the analytic hierarchy process”, Int. J. Serv. Sci. 1, no. 1, pp. 83–98, 2008.
[30] Taljegard, M. Brynolf, S., Grahn, M., Andersson, K. Johnson, H. “Cost-effective choices of marine fuels in a carbon-constrained world: results from a global energy model”, Environ. Sci. Technol., 48, no. 21, pp. 12986–12993, 2014.
[31]Transport & Environment. “Modelling The Impact Of FuelEU Maritime On EU Shipping”, 2023. Accessed: Jan. 28, 2024. [Online]. Available: https://www.transportenvironment.org/uploads/files/FuelEU-Maritime-Impact-Assessment.pdf
[32] Traut, M. Larkin, A., Anderson, K. McGlade, C., Sharmina, M., Smith, T. “CO2 abatement goals for international shipping”, Clim. Policy, 18, no.8, pp. 1066-1075, 2018.
[33] Turcanu, A. L. (Marcu), Gasparotti, C., Rusu, E. “Green fuels — A new challenge for marine industry”. Energy Reports, Volume 7, Supplement 3, pp. 127-132, 2021.
[34] UNCTAD. “Developments in international seaborne trade”. Review of Maritime Transport, 2018. Accessed: Dec. 20, 2023. [Online]. Available: https://unctad.org/system/files/official-document/rmt2018ch1_en.pdf
[35] Ziolkowska, J.R. “Evaluating the sustain ability of biofuels feedstocks: a multi-objective framework for supporting decision-making”, Biomass Bioenergy, 59, pp. 425–440, 2013.
[36] Wang, Y. and Wright, L.A. “A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, 24 and Policy Challenges for Clean Energy Implementation”. World, 2, no. 4, pp. 456–481, 2021, 10.3390/world2040029.
Published
2024-12-04
How to Cite
1.
Gasparotti C. Alternative marine fuels for cleaner maritime transport. Annals of ”Dunarea de Jos” University of Galati. Fascicle XI Shipbuilding [Internet]. 4Dec.2024 [cited 13Mar.2025];47:15-4. Available from: https://gup.ugal.ro/ugaljournals/index.php/fanship/article/view/7048
Section
Articles

Most read articles by the same author(s)

1 2 > >>