Study on the Performance of [PAC/PSf]-mixed Matrix Membrane used in Water Filtration

  • Ștefan Cătălin PINTILIE "Dunarea de Jos" University of Galati, Romania
  • Laurenția Geanina PINTILIE "Dunarea de Jos" University of Galati, Romania
  • Andreea Liliana LAZĂR "Dunarea de Jos" University of Galati, Romania
  • Ștefan BALTĂ "Dunarea de Jos" University of Galati, Romania
Keywords: Polysulfone, Activated Carbon, Membrane, Retention, Flux, Permeability

Abstract

The polysulfone used in membrane manufacturing showed low performances in wastewater treatment when compared with other special polymers. Researchers worldwide are trying to improve membrane performances through different techniques, such as: blending, grafting and surface chemical reaction, etc. [1]. Blending is an efficient technique with great performance and relative low cost compared with other means of membrane enhancement. All membranes were manufactured by phase inversion and the composite membrane solution was mixed with powdered activated carbon (AC). The activated carbon is used on a large scale in conventional wastewater treatment systems, having good antibacterial properties and high absorption degree of contaminants. The studied membranes were characterized as follows: flux, permeability, retention of Naphthol Green B (NGB) dye, contact angle and SEM microscopy. The permeability results of the composite membranes blended with activate carbon particles showed better performance than the neat membrane, with an increase of 15.384%. Contact angle increased after powdered activated carbon blending in membrane matrix.

Creative Commons License

Downloads

Download data is not yet available.

References

[1]. Ng L. Y., Mohammad A. W., Leo C. P., Hilal N., Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination, vol. 308, p. 15-33, 2013.
[2]. Homayoonfal M., Akbari A., Preparation of polysulfone nano-structured membrane for sulphate ions removal from water, Iran. J. Environ. Health. Sci. Eng., vol. 7, no. 5, p. 407-412, 2010.
[3]. Shirazi M. J. A., Bazgir S., Shirazi M. M. A., Ramakrishna S., Coalescing filtration of oily wastewaters: characterization and application of thermal treated, electrospun polystyrene filters, Desalin. Water Treat., vol. 51, no. 31-33, p. 5974-5986, 2013.
[4]. Shirazi M. M. A., Kargari A., Tabatabaei M., Ismail A. F., Matsuura T., Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation, Chem. Eng. Process. Process Intensif., vol. 78, p. 58-66, 2014.
[5]. Baker R. W., Membrane Technology and Applications, 2nd ed. Menlo Park, California: John Wiley and Sons, 2004.
[6]. Tiron L. G., Pintilie Ș. C., Vlad M., Birsan I. G., Baltă Ș., Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique, IOP Conf. Ser. Mater. Sci. Eng., vol. 209, p. 12013, 2017.
[7]. Hausmanns B. K. S., Laufenberg G., Rejection of acetic acid and its improvement by combination with organic acids in dilute solutions using reverse osmosis, J. Membr. Sci., vol. 104, no. (1-2), p. 95-98, 1996.
[8]. Cath A. E. C. T. Y., Adams V. D., Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement, J. Membr. Sci., vol. 228, no. 1, p. 5-16, 2004.
[9]. Emadzadeh D., Lau W. J., Ismail A. F., Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection, Desalination, vol. 330, p. 90-99, 2013.
[10]. Chen X. N., Wan L. S., Wu Q. Y., Zhi S. H., Xu Z. K., Mineralized polyacrylonitrile-based ultrafiltration membranes with improved water flux and rejection towards dye, J. Memb. Sci., vol. 441, p. 112-119, 2013.
[11]. Hendricks D. W., Water Treatment Unit Processes: Physical and Chemical, CRC Press, 2006.
[12]. Ferhan Cecen O. A., Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
[13]. Manasi Ghamande S. G., Sacchidanand Gogawale, Processed Waste to Process Waste, Int. J. Adv. Res. Educ. Technol., vol. 3, no. 2, p. 65-69, 2016.
[14]. Merkus H. G., Particle Size Measurements: Fundamentals, Practice, Quality, 2009.
[15]. Pabst E., Gregorová W., Characterization of particles and particle systems, ICT Prague, p. 27-28, 2007.
[16]. Arai Y., Akers R. J., Treasure C. R. G., Chemistry of powder production, vol. 1, English, 1996.
[17]. Varenne F., Makky A., Gaucher-Delmas M., Violleau F., Vauthier C., Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods, Pharm. Res., vol. 33, no. 5, p. 1220-1234, 2016.
[18]. Kiernan R. W. H. J. A., Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine 10th , Taylor and Francis, 2002.
[19]. Huang L., Zhao S., Wang Z., Wu J., Wang J., Wang S., In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane, J. Memb. Sci., vol. 499, p. 269-281, 2016.
[20]. Ahmad A. L., Majid M. A., Ooi B. S., Functionalized PSf/SiO2 nanocomposite membrane for oil-in-water emulsion separation, Desalination, vol. 268, no. 1-3, p. 266-269, 2011.
[21]. Wang J., Sun H., Gao X., Gao C., Enhancing antibiofouling performance of Polysulfone (PSf) membrane by photo-grafting of capsaicin derivative and acrylic acid, Appl. Surf. Sci., vol. 317, p. 210-219, 2014.
[22]. Zhang G., Lu S., Zhang L., Meng Q., Shen C., Zhang J., Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics, J. Memb. Sci., vol. 436, p. 163-173, 2013.
[23]. ***, ISO/TS 10797:2012: Nanotechnologies - Characterization of single-wall carbon nanotubes using transmission electron microscopy.
[24]. Cheremisinoff N. P., Perfluorinated Chemicals (PFCs): Contaminants of Concern, 2016.
[25]. Kallio T., Antifouling properties of TiO2: Photocatalytic decomposition and adhesion of fatty and rosin acids, sterols and lipophilic wood extractives, Colloids Surfaces a Physicochem. Eng. Asp., vol. 291, no. 1-3, p. 162-176, 2006.
[26]. Pintilie S. C., Tiron L. G., Birsan I. G., Ganea D., Balta S., Influence of ZnO Nanoparticle Size and Concentration on the Polysulfone Membrane Performance, Mater. Plast., vol. 54, no. 2, p. 257-261, 2017.
[27]. Zhou W., Zhang P., Liu W., Anatase TiO2 nanospindle/activated carbon (AC) composite photocatalysts with enhanced activity in removal of organic contaminant, Int. J. Photoenergy, vol. 2012, p. 28-30, 2012.
[28]. Sun H., Superhydrophobic activated carbon-coated sponges for separation and absorption, Chem. Sus. Chem., vol. 6, no. 6, p. 1057-1062, 2013.
[29]. Qin H. L. J. J., Cao Y. M., Li Y. Q., Li Y., Oo M. H., Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Sep. Purif. Technol., vol. 36, p. 149, 2004.
[30]. Babu V. G. G. P. R., Membrane characteristics as determinant in fouling of UF membranes, Sep. Purif. Technol., vol. 24, p. 23, 2001.
[31]. Huang Z. Q., Chen K., Li S. N., Yin X. T., Zhang Z., Xu H. T., Effect of ferrosoferric oxide content on the performances of polysulfone-ferrosoferric oxide ultrafiltration membranes, J. Memb. Sci., vol. 315, no. 1-2, p. 164-171, 2008.
Published
2019-12-15
How to Cite
1.
PINTILIE Ștefan C, PINTILIE LG, LAZĂR AL, BALTĂ Ștefan. Study on the Performance of [PAC/PSf]-mixed Matrix Membrane used in Water Filtration. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2019 [cited 23Jan.2025];42(4):32-9. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/2816
Section
Articles