Modeling and Simulation of Auxetic Materials for Balistic Protection
Keywords:
modeling, simulation, auxetic materials, balistic protection
Abstract
A type of structural metamaterials known as auxetics has a negative Poisson's ratio. Auxetic structurals have been found to possess a number of better qualities when compared to traditional ones, including: greater energy absorption, stronger indentation resistance, and enhanced mechanical properties. As a result, auxetic structures are becoming more known as a high-performance, lightweight defensive construction that can survive collisions and blasts.
Downloads
Download data is not yet available.
References
[1]. Anand P., Chandrakant R. K., Satish S. B., Development of materials and structures for shielding applications against Blast and Ballistic impact: A Detailed Review, Thin-Walled Structures, vol. 179, 2022.
[2]. Yongqiang L., Hualin F., Xin-Lin G., Ballistic helmets: Recent advances in materials, protection mechanisms, performance, and head injury mitigation, Composites Part B: Engineering, vol. 238, 2022.
[3]. Qian M., Pee D. L., Development of spiral auxetic structures, Composite Structures, vol. 192, p. 310-316, 2018.
[4]. Wu S., Sikdar P., Bhat G. S., Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches, Defence Technology, vol. 21, p. 33-61, 2023.
[5]. Rajendra P. B., Steven L., Tuan N., Abdallah G., Tuan N., Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications, Engineering Structures, 2023.
[6]. Zhenhua Z., Zhan Z., Xiufeng H., Experimental study on the impact response of the polyurea-coated 3D auxetic lattice sandwich panels subjected to air explosion, Composite Structures, vol. 323, 2023.
[7]. Xing C. T., Wei G. Z., Jiang X., Dong H., Xi H. N., Hang H., Jian H., Tong G., Yu F. W., Yi M. X., Xin R., A stretchable sandwich panel metamaterial with auxetic rotating-square surface, International Journal of Mechanical Sciences, vol. 251, 2023.
[8]. Feng J., Shu Y., Chang Q., Hai T. L., Alex R., Lian Z., Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels, Composite Structures, vol. 305, 2023.
[9]. Stefan B., Franziska H., Dirk B., Anne J., Optimized design for modified auxetic structures based on a neural network approach, Materials Today Communications, vol. 32, 2022.
[10]. Jianjun Z., Guoxing L., Zhong Y., Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Composites Part B: Engineering, vol. 201, 2020.
[11]. Nejc N., Lovre K. O., Zoran R., Matej V., Mechanical properties of hybrid metamaterial with auxetic chiral cellular structure and silicon filler, Composite Structures, vol. 234, 2020.
[12]. Ying L., Zihao C., Dengbao X., Wenwang W., Daining F., The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading, International Journal of Impact Engineering, vol. 137, 2020.
[13]. Qiang G., Xuan Z., Chenzhi W., Liangmo W., Zhengdong M., Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading, Materials & Design, vol 143, 2018.
[14]. Grujicic M., Galgalikar R., Snipes J. S., Yavari R., Ramaswami S., Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwichstructures, Materials & Design, vol. 51, 2013.
[15]. Imbalzano G., Tran P., Ngo T. D., Lee V. S., A numerical study of auxetic composite panels under blast loadings, Composite Structures, vol. 135, 2016.
[16]. Chang Q., Feng J., Shu Y., Remennikov A., Shang C., Chen D., Dynamic crushing response of novel re-entrant circular auxetic honeycombs: Numerical simulation and theoretical analysis, Aerospace Science and Technology, vol. 124, 2022.
[17]. Nejc N., Biasetto L., Rebesan P., Zanini F., Carmignato S., Krstulovi-Opara L., Vesenjak M., Ren Z., Experimental and computational evaluation of tensile properties of additively manufactured hexa- and tetrachiral auxetic cellular structures, Additive Manufacturing, vol.45, 2021.
[18]. Ying L., Zihao C., Dengbao X., Wenwang W., Daining F., The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading, International Journal of Impact Engineering, vol. 137, 2020.
[19]. Yuanlong W., Yi Y., Chunyan W., Guan Z., Aminreza K., Wanzhong Z., On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels, International Journal of Mechanical Sciences, vol. 173, 2020.
[20]. Chang Q., Remennikov A., Pei L., Yang S., Yu Z., Ngo D., Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations, Composite Structures, vol. 180, p. 161-178, 2017.
[21]. Jie M., Jiayi L., Mangong Z., Wei H., Experimental and numerical study on the ballistic impact resistance of the CFRP sandwich panel with the X-frame cores, International Journal of Mechanical Sciences, vol. 232.
[22]. Nejc N., Luka S., Matej V., Zoran R., Blast response study of the sandwich composite panels with 3D chiral auxetic core, Composite Structures, vol. 210, 2019.
[23]. Mehvesh I., Muhammad U., Ghulam H., Malik A. U., Wasim K., Asad H., Development of mortar filled honeycomb sandwich panels for resistance against repeated ballistic impacts, Journal of Materials Research and Technology, vol. 24, 2023.
[24]. Thawani V., Hazael R., Critchley R., Numerical modelling study of a modified sandbag system for ballistic protection, Journal of Computational Science, vol. 53, 2021.
[2]. Yongqiang L., Hualin F., Xin-Lin G., Ballistic helmets: Recent advances in materials, protection mechanisms, performance, and head injury mitigation, Composites Part B: Engineering, vol. 238, 2022.
[3]. Qian M., Pee D. L., Development of spiral auxetic structures, Composite Structures, vol. 192, p. 310-316, 2018.
[4]. Wu S., Sikdar P., Bhat G. S., Recent progress in developing ballistic and anti-impact materials: Nanotechnology and main approaches, Defence Technology, vol. 21, p. 33-61, 2023.
[5]. Rajendra P. B., Steven L., Tuan N., Abdallah G., Tuan N., Anti-blast and -impact performances of auxetic structures: A review of structures, materials, methods, and fabrications, Engineering Structures, 2023.
[6]. Zhenhua Z., Zhan Z., Xiufeng H., Experimental study on the impact response of the polyurea-coated 3D auxetic lattice sandwich panels subjected to air explosion, Composite Structures, vol. 323, 2023.
[7]. Xing C. T., Wei G. Z., Jiang X., Dong H., Xi H. N., Hang H., Jian H., Tong G., Yu F. W., Yi M. X., Xin R., A stretchable sandwich panel metamaterial with auxetic rotating-square surface, International Journal of Mechanical Sciences, vol. 251, 2023.
[8]. Feng J., Shu Y., Chang Q., Hai T. L., Alex R., Lian Z., Blast response and multi-objective optimization of graded re-entrant circular auxetic cored sandwich panels, Composite Structures, vol. 305, 2023.
[9]. Stefan B., Franziska H., Dirk B., Anne J., Optimized design for modified auxetic structures based on a neural network approach, Materials Today Communications, vol. 32, 2022.
[10]. Jianjun Z., Guoxing L., Zhong Y., Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Composites Part B: Engineering, vol. 201, 2020.
[11]. Nejc N., Lovre K. O., Zoran R., Matej V., Mechanical properties of hybrid metamaterial with auxetic chiral cellular structure and silicon filler, Composite Structures, vol. 234, 2020.
[12]. Ying L., Zihao C., Dengbao X., Wenwang W., Daining F., The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading, International Journal of Impact Engineering, vol. 137, 2020.
[13]. Qiang G., Xuan Z., Chenzhi W., Liangmo W., Zhengdong M., Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading, Materials & Design, vol 143, 2018.
[14]. Grujicic M., Galgalikar R., Snipes J. S., Yavari R., Ramaswami S., Multi-physics modeling of the fabrication and dynamic performance of all-metal auxetic-hexagonal sandwichstructures, Materials & Design, vol. 51, 2013.
[15]. Imbalzano G., Tran P., Ngo T. D., Lee V. S., A numerical study of auxetic composite panels under blast loadings, Composite Structures, vol. 135, 2016.
[16]. Chang Q., Feng J., Shu Y., Remennikov A., Shang C., Chen D., Dynamic crushing response of novel re-entrant circular auxetic honeycombs: Numerical simulation and theoretical analysis, Aerospace Science and Technology, vol. 124, 2022.
[17]. Nejc N., Biasetto L., Rebesan P., Zanini F., Carmignato S., Krstulovi-Opara L., Vesenjak M., Ren Z., Experimental and computational evaluation of tensile properties of additively manufactured hexa- and tetrachiral auxetic cellular structures, Additive Manufacturing, vol.45, 2021.
[18]. Ying L., Zihao C., Dengbao X., Wenwang W., Daining F., The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading, International Journal of Impact Engineering, vol. 137, 2020.
[19]. Yuanlong W., Yi Y., Chunyan W., Guan Z., Aminreza K., Wanzhong Z., On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels, International Journal of Mechanical Sciences, vol. 173, 2020.
[20]. Chang Q., Remennikov A., Pei L., Yang S., Yu Z., Ngo D., Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations, Composite Structures, vol. 180, p. 161-178, 2017.
[21]. Jie M., Jiayi L., Mangong Z., Wei H., Experimental and numerical study on the ballistic impact resistance of the CFRP sandwich panel with the X-frame cores, International Journal of Mechanical Sciences, vol. 232.
[22]. Nejc N., Luka S., Matej V., Zoran R., Blast response study of the sandwich composite panels with 3D chiral auxetic core, Composite Structures, vol. 210, 2019.
[23]. Mehvesh I., Muhammad U., Ghulam H., Malik A. U., Wasim K., Asad H., Development of mortar filled honeycomb sandwich panels for resistance against repeated ballistic impacts, Journal of Materials Research and Technology, vol. 24, 2023.
[24]. Thawani V., Hazael R., Critchley R., Numerical modelling study of a modified sandbag system for ballistic protection, Journal of Computational Science, vol. 53, 2021.
Published
2023-12-15
How to Cite
1.
MARIN F-B, DOGARU AA, MARIN M. Modeling and Simulation of Auxetic Materials for Balistic Protection. The Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science [Internet]. 15Dec.2023 [cited 30Oct.2024];46(4):93-6. Available from: https://gup.ugal.ro/ugaljournals/index.php/mms/article/view/6509
Issue
Section
Articles