An Intelligent System for Temperature Body Monitoring Using Arduino Platform
Abstract
An accurate measurement of the body temperature is a critical component in monitoring the human health, with applications ranging from clinical diagnostics to wearable health monitoring systems. Using the Arduino platform for body temperature monitoring provides an affordable, customizable and efficient solution for a wide range of applications, from personal care to patient monitoring in hospitals, this type of device can significantly contribute to improving health and safety. The MLX90614 sensor is an innovative and efficient solution for temperature measurement in the medical engineering field. With its outstanding accuracy and adaptability in measuring body temperature and medical devices, this device
asserts itself as an indispensable tool in monitoring and managing the health of patients and medical devices in a variety of clinical and treatment settings.
Downloads
References
[2]. Son Y. L., Ubuka T., Tsutsui K., Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone, Front Neuroendocrinol, 64:100953, 2022.
[3]. Sheng J. A., Bales N. J., Myers S. A., Bautista A. I., Roueinfar M., Hale T. M., Handa R. J., The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions, J Frontiers in Behavioral Neuroscience, 14, 2021.
[4]. Sessler D. I., Temperature monitoring and perioperative thermoregulation, Anesthesiology, 2008, Aug;109(2), p. 318-338, 2008.
[5]. Osilla E. V., Marsidi J. L., Shumway K. R., et al., Physiology, Temperature Regulation: StatPearls, 2024.
[6]. Crucianelli L., Salvato G., Nagai Y., Quadt L., Critchley H., Sudomotor function, thermoregulation and electrodermal control in the human brain, Editor(s): Jordan Henry Grafman, Encyclopedia of the Human Brain (Second Edition), Elsevier, p. 357-373, 2025.
[7]. Shido O., Matsuzaki K., Katakura M., Chapter 28 - Neurogenesis in the thermoregulatory system, Editor(s): Andrej A. Romanovsky, Handbook of Clinical Neurology, Elsevier, vol. 156, p. 457-463, 2018.
[8]. Kushimoto S., Yamanouchi S., Endo T., Sato T., Nomura R., Fujita M., Kudo D., Omura T., Miyagawa N., Sato T., Body temperature abnormalities in non-neurological critically ill patients: a review of the literature, J Intensive Care, 2(1):14, 2014.
[9]. Erkens R., Wernly B., Masyuk M., Muessig J. M., Franz M., Schulze P. C., Lichtenauer M., Kelm M., Jung C., Admission Body Temperature in Critically Ill Patients as an Independent Risk Predictor for Overall Outcome, Med Princ Pract., 29(4), p. 389-395, 2020.
[10]. Tan D. J., Chen J., Zhou Y., et al., Association of body temperature and mortality in critically ill patients: an observational study using two large databases, Eur J Med Res 29, 33, 2024.
[11]. Sakkat A., Alquraini M., Aljazeeri J., Farooqi A. M., Fayez A., Waleed A., Temperature control in critically ill patients with fever: A meta-analysis of randomized controlled trials, Journal of Critical Care, vol. 61, p. 89-95, 2021.
[12]. Faulds A., Meekings M., Tim T., Temperature management in critically ill patients, JF Continuing Education in Anaesthesia Critical Care & Pain JO Contin Educ Anaesth Crit Care Pain, VO 13 IS 3 SP 75 OP 79, 2013.
[13]. Luo W., Cao L., Wang C., Low body temperature and mortality in critically ill patients with coronary heart disease: a retrospective analysis from MIMIC-IV database, Eur J Med Res, 28, 614, 2023.
[14]. Cutuli S. L., et al., Accuracy of non-invasive body temperature measurement methods in critically ill patients: a prospective, bicentric, observational study, Critical Care and Resuscitation, vol. 23, issue 3, p. 346-353, 2021.
[15]. Liu B., Zhou Q., Clinical phenotypes of sepsis: a narrative review, J Thorac Dis., 2024 Jul 30, 16(7), p. 4772-4779, 2024.
[16]. Chakraborty R. K., Burns B., Systemic Inflammatory Response Syndrome, StatPearls Publishing, 2024.
[17]. Wrotek S., LeGrand E. K., Dzialuk A., Alcock J., Let fever do its job: The meaning of fever in the pandemic era, Evolution, Medicine, and Public Health, vol. 9, issue. 1, p. 26-35, 2021.
[18]. Lawson L., et al., Accuracy and Precision of Noninvasive Temperature Measurement in Adult Intensive Care Patients, American journal of critical care: an official publication, American Association of Critical-Care Nurses, 16, p. 485-96, 10.4037/ajcc2007.16.5.485., 2007.
[19]. Nascimento A., Biachi C., Lyra F. B., Gnatta F., Poveda J. R., Evaluation of different body temperature measurement methods for patients in the intraoperative period, Revista Latino-americana De Enfermagem, 32, e4143, 2024.
[20]. Daniel J. Niven, Jonathan E. Gaudet, Kevin B. Laupland, et al., Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Meta-analysis, Ann Intern Med., 163, p. 768-777, 2015.
[21]. Zhao Y., Bergmann J. H. M., Non-Contact Infrared Thermometers and Thermal Scanners for Human Body Temperature Monitoring: A Systematic Review, Sensors, 23, 7439, 2023.
[22]. Wagner M., Lim-Hing K., Bautista M. A., et al., Comparison of a Continuous Noninvasive Temperature to Monitor Core Temperature Measures During Targeted Temperature Management, Neurocrit Care, 34, p. 449-455, 2021.
[23]. Drumheller B. C., Stein D. M., Scalea T. M., Use of an intravascular temperature control catheter for rewarming of hypothermic trauma patients with ongoing hemorrhagic shock after combined damage control thoracotomy and laparotomy: A case
series, Injury, 49(9), p. 1668-1674, 2018.
[24]. Schmutzhard E., et al., Safety and efficacy of a novel intravascular cooling device to control body temperature in neurologic intensive care patients: a prospective pilot study, Crit Care Med., 30(11), p. 2481-8, 2002.
[25]. Rubia-Rubia J., Arias A., Sierra A., Aguirre-Jaime A., Measurement of body temperature in adult patients: Comparative study of accuracy, reliability and validity of different devices, International Journal of Nursing Studies, 48, issue 7, p. 872-880, 2011.
[26]. Gao Y. L., Ming J., Miaowen Z. Yang, Ji. X., A narrative review of intravascular catheters in therapeutic hypothermia, Brain Circulation, 10(1), p. 11-20, Jan-Mar 2024.
[27]. Ashraf S., Khattak S. P., Iqbal M. T., Design and Implementation of an Open-Source and Internet-of-Things-Based Health Monitoring System, J. Low Power Electron. Appl., 13, 57, 2023.
[28]. Abdulmalek S., et al., IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review, Healthcare (Basel), 10(10), 1993, 2022.
[29]. Junaid S. B., Imam S., et. al., Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey, Healthcare (Basel), 10(10), 1940, 2022.
[30]. Pronami Bora, et al., Smart real time health monitoring system using Arduino and Raspberry Pi, Materials Today: Proceedings, vol. 46, 9, p. 3855-3859, 2021.
[31]. Sumathy B., et al., Wearable Non-invasive Health Monitoring Device for Elderly using IOT, IOP Conf. Ser.: Mater. Sci. Eng., 1012, 012011, 2021.
[32]. Deng Z., Guo L., Chen X., Wu W., Smart Wearable Systems for Health Monitoring, Sensors, 23(5), 2479, 2023.
[33]. Ahmed Asif, Abdullah Mohd Noor, Taib Ishkrizat, Design of a contactless body temperature measurement system using Arduino, Indonesian Journal of Electrical Engineering and Computer Science, 19, 1251, 2020.
[34]. Kimmo K., et al., Infrared Temperature sensor system for mobile devices, Sensors and Actuators A Physical, 158, p. 161-167, 2010.
[35]. Wang K., et al., Non-contact infrared thermometers for measuring temperature in children: Primary care diagnostic technology update, Br. J. Gen. Pract., 64, p. e681-e683, 2014.
[36]. Goh Nicholas, et al., Design and Development of a Low Cost, Non-Contact Infrared Thermometer with Range Compensation, Sensors, 21, 3817, 2021.
[37]. Ng K. G., Wong S. T., Lim S. M., Goh Z., Evaluation of the Cadi ThermoSENSOR wireless skin-contact thermometer against ear and axillary temperatures in children, J Pediatr Nurs., 25(3), p. 176-86, 2010.
[38]. Zhang J., Development of a Non-contact Infrared Thermometer, 10.2991/aetr-17.2018.59, 2018.
[39]. Nuraidha A. C., et al., Development of a non-contact infrared thermometer as a prevention Covid-19, AIP Conference Proceedings, vol. 2491, no. 1, AIP Publishing, 2023.
[40]. Long Guangli, Design of a Non-Contact Infrared Thermometer, International Journal on Smart Sensing and Intelligent Systems, 9, p. 1110-1129, 10.21307/ijssis-2017-910, 2016.
[41]. Chunyan Li, Jiaji Wang, Shuihua Wang, Yudong Zhang, A review of IoT applications in healthcare, Neurocomputing, vol. 565, 127017, 2024.
[42]. Aya-Parra, et al., Monitoring System for Operating Variables in Incubators in the Neonatology Service of a Highly Complex Hospital through the Internet of Things (IoT), Sensors, 23, 5719, 10.3390/s23125719, 2023.
[43]. Ryanto I. Komang Agus Ady, Maneetham Dechrit, Triandini Evi, Developing a smart system for infant incubators using the internet of things and artificial intelligence, International Journal of Electrical and Computer Engineering, v. 14, n. 2, p. 2293-2312, 2024.
[44]. Bhujbal R., et al., Smart ASHeR Infant Incubator for Accurate Monitoring and Control, 8, p. c531-c536, 10.1729/Journal.27909, 2021.
[45]. Puvindra Y., et al., Enhancement Drip Dose Infusion Accuracy Based on Optocoupler and Microcontroller Sensor, International Journal of Advanced Health Science and Technology, 2, 10.35882/ijahst.v2i4.135, 2022.
[46]. Subrata A., et. al., Low-Cost Early Detection Device for Breast Cancer based on Skin Surface Temperature, IT Journal Research and Develop., 9, p. 27-37. 10.25299/itjrd.2024.16034, 2024.