Stress and Fatigue Simulation of Structural Blades in Mechanical Clearing Operations
Abstract
This study presents a numerical investigation into the structural performance of the cutting blades used in vegetation-clearing operations, particularly within mechanical systems designed for demining or land maintenance. Using finite element analysis (FEA), the research evaluates stress distribution, fatigue behavior, and failure risk under cyclic loading conditions. Multiple simulation models were developed to replicate realistic operational forces and identify critical stress concentration zones. The fatigue simulations provided insights into lifetime predictions and cumulative damage evolution, expressed through percentage-based degradation maps. Von Mises stress analyses further validated the structural response of the blades under high-load scenarios. The results indicate that proper geometric configuration and material selection are essential for improving fatigue life and ensuring operational safety in harsh environments. The proposed methodology supports optimization efforts in blade design for enhanced durability and reliability.
Downloads
References
[2]. Zhang R., Zhou H., Li X., Modeling fatigue behavior under cyclic loading for mechanical components, Reliability Engineering & System Safety, vol. 203, p. 107140, 2023.
[3]. García Márquez M. T., Arellano Carbonell J., Surface degradation predicted via fatigue damage mechanics, Engineering Fracture Mechanics, vol. 264, p. 109846, 2024.
[4]. Pérez A., Lee S. H., Review of fatigue damage detection techniques, Engineering Failure Analysis, vol. 135, p. 105572, 2021.
[5]. Wang L., Chen J., Fatigue life prediction for a 5 MW wind turbine blade using multiaxial S-N curves, Processes, vol. 11, no. 7, p. 1789, 2023.
[6]. Ramezani H., Jafari A., Fatigue reliability assessment approach for wind turbine blades, Quality and Reliability Engineering International, vol. 38, no. 1, p. 456-471, 2022.
[7]. Nelson C. D., Kaminski M., Fan blade fatigue fractures in CFM56 engines: analysis and prevention, Journal of Failure Analysis and Prevention, vol. 23, no. 4, p. 895-907, 2023.
[8]. Mirhosseini S. M., Panahi M., Fretting fatigue in mechanical joints: a literature review, Lubricants, vol. 8, no. 10, p. 97, 2020.
[9]. Oliveira M. C., Ribeiro A. S., Root causes and mechanisms of failure in wind turbine blades, Polymers, vol. 14, no. 1, p. 110, 2022.
[10]. Shen Y., Wang J., Structural behavior of reinforced blade-like components under bending fatigue, Wind Energy Science, vol. 5, no. 2, p. 459-472, 2020.
[11]. Liu Q., Zhang Y., Fatigue analysis of engine blade structure under thermal loading, Brazilian Journal of Mechanical Engineering, vol. 44, p. 233-240, 2022.
[12]. Carreon J., Ramos A., Numerical modelling and simulation analysis of wind turbine blades, Composite Structures, vol. 310, p. 116704, 2023.
[13]. Eslami M., Saadatnia Z., Effects of graphene reinforcement on static bending of blade-type structures, Materials, vol. 17, no. 1, p. 91, 2024.
[14]. Bian H., Han L., Fatigue life prediction of wind turbine blades based on damage accumulation models, Processes, vol. 11, no. 9, p. 2560, 2023.
[15]. Gao Y., Zhang J., Structural optimization of blade tips for extended fatigue life, Renewable Energy, vol. 206, p. 904-914, 2023.
[16]. Kang H. J., Ahn K. H., Graphene-platelet reinforced composite blades for thermal fatigue resistance, Materials, vol. 17, no. 3, p. 687, 2024.
[17]. Xu D., Ma Z., Numerical study on static bending of cracked composite blades, Nanomaterials, vol. 14, no. 2, p. 328, 2024.
[18]. Patel M., Lee C., Comparative study of shell vs. solid FE models for turbine blade testing, Applied Composite Materials, vol. 25, no. 6, p. 1349-1365, 2018.
[19]. Horvat D., Miskovic D., Mistuned blade fatigue prediction in turbine systems, Smart Energy Technologies, vol. 15, no. 1, p. 84-93, 2023.
[20]. Kumar P., Rai N., Numerical simulation of blade fatigue under diametrical compression, Physica D: Nonlinear Phenomena, vol. 237, p. 1569-1577, 2006.
[21]. Filip D., Golea L., Finite element simulation of composite blades under critical loads, Applied Composite Materials, vol. 31, no. 2, p. 145-159, 2024.
